Compaction of Anisotropic Granular Materials: Symmetry Effects

Abstract:

Article Preview

We perform numerical simulation of a lattice model for the compaction of a granular material based on the idea of reversible random sequential adsorption. Reversible random sequential adsorption of objects of various shapes on a two−dimensional triangular lattice is studied numerically by means of Monte Carlo simulations. The growth of the coverage ρ(t) above the jamming limit to its steady−state value ρ∞ is described by a pattern ρ (t) = ρ∞ − ρEβ[−(t/τ)β], where Eβ denotes the Mittag−Leffler function of order β ∈ (0, 1). For the first time, the parameter τ is found to decay with the desorption probability P− according to a power law τ = A P− −γ. Exponent γ is the same for all shapes, γ = 1.29 ± 0.01, but parameter A depends only on the order of symmetry axis of the shape. Finally, we present the possible relevance of the model to the compaction of granular objects of various shapes.

Info:

Periodical:

Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic

Pages:

355-360

DOI:

10.4028/www.scientific.net/MSF.518.355

Citation:

L. Budinski-Petković et al., "Compaction of Anisotropic Granular Materials: Symmetry Effects", Materials Science Forum, Vol. 518, pp. 355-360, 2006

Online since:

July 2006

Export:

Price:

$35.00

[1] J. W. Evans: Rev. Mod. Phys. Vol. 65.

[4] (1993), p.1281.

[2] V. Privman: Colloids and Surfaces A Vol. 165.

[4] (2000), p.231.

[3] R.S. Ghaskadvi and M. Dennin: Phys. Rev. E Vol. 61.

[2] (2000), p.1232.

[4] A.J. Kolan, E.R. Nowak and A.V. Tkachenko: Phys. Rev. E Vol. 59.

[3] (1999), p.3094.

[5] Lj. Budinski−Petković and U. Kozmidis-Luburić: Phys. Rev. E Vol. 56.

[6] (1997), p.6904.

[6] M.D. Khandkar, A.V. Limaye and S.B. Ogale: Phys. Rev. Lett. Vol. 84.

[3] (2000), p.570.

[7] J. -S. Wang and R.B. Pandey: Phys. Rev. Lett. Vol. 77.

[9] (1996), p.1773.

[8] J.W. Lee and B.H. Hong: J. Chem. Phys. Vol. 119.

[1] (2003), p.533.

[9] J.W. Lee: Physica A Vol. 331 (2004), p.531.

[10] J.C. Phillips: Rep. Prog. Phys. Vol. 59 (1996), p.1133.

[11] R.K. Saxena, A.M. Mathai and H.J. Haubold: Physica A Vol. 344 (2004), p.657.

[12] M. Wackenhut and H. Herrmann: Phys. Rev. E Vol. 68 (2003), p.041303.

In order to see related information, you need to Login.