Radiological Characterization of Semiconductor Materials in Field Effect Transistor Dosimeter by Monte Carlo Method


Article Preview

The use of semiconductor materials in radiation processing, radiation therapy and diagnostics, and detection of cosmic radiation motivated development of numerical methods for its radiological characterization. This paper presents the application of the Monte Carlo method using the FOTELP-2K4 code for radiological characterization of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter. The advantages of MOSFET dosimeters include small size, immediate readout, and ease of use for a wide photon energy range. In order to determine the dosimeter response accurately, distribution of the absorbed dose in the MOSFET structure has been investigated. Our results show that the absorbed dose distribution calculated by the presented simulation model compares well with the published data.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic




S. J. Stanković et al., "Radiological Characterization of Semiconductor Materials in Field Effect Transistor Dosimeter by Monte Carlo Method", Materials Science Forum, Vol. 518, pp. 361-366, 2006

Online since:

July 2006




[1] A. Holmes-Siedle: Nucl. Instrum. Methods in Phys. Research Vol. 121 (1974), p.169.

[2] D.J. Gladstone and L.M. Chin: Med. Phys. Vol. 18 (1991), p.542.

[3] M. Soubra, J. Cygler and G. Mackay: Med. Phys. 21 (1994), p.567.

[4] G.I. Kaplan, A.B. Rosenfeld, B.J. Allen, J.T. Booth, M.G. Carolan and A. Holmes-Siedle: Med. Phys. Vol. 27 (2000), p.239.

[5] T.R. Oldham and F.B. McLean: IEEE Trans. Nucl. Sci. Vol. 50 (2003), p.483.

[6] C.R. Edwards, S. Green, J.E. Palethorpe and P.J. Mountford: Phys. Med. Biol. Vol. 42 (1997), p.2383.

[7] T. Kron, L. Duggan, T. Smith, A. Rosenfeld, M. Butson, G. Kaplan, S. Howlett and K. Hyodo: Phys. Med. Biol. Vol. 43 (1998), p.3235.

[8] G.H. Hartmann, W. Lutz, J. Arndt, I. Ermakov, E.B. Podgorsak, L. Schad, C. Serago and S. M. Vatinisky: Report from a Quality Assurance Task Group (Springer, Berlin, Germany 1995).

[9] P. Andreo: Phys. Med. Biol. Vol. 36 (1991), p.861.

[10] A.B. Rosenfeld, M.G. Carolan, G.I. Kaplan, B.J. Allen, and V.I. Khivrich: IEEE Trans. Nucl. Sci. Vol. 42 (1995), p.1870.

[11] R.D. Ilic: FOTELP-2K3, Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques (OECD NEA Data bank , IAEA-1388, Feb. 2004) http: /www. nea. fr/dprog.

[12] F. Salvat, J. Fernandez-Vera, E. Acosta and J. Sempau: PENELOPE - A Code System for Monte Carlo Simulation of Electron and Photon Transport (Workshop Proceedings Issy-lesMoulineaux, France 2001) http: /www. nea. fr/dprog.

[13] B. Wang, C. -H. Kim and X.G. Xu: Med. Phys. Vol. 31 (2004), p.1003.

[14] B. Wang, C.H. Kim and X.G. Xu: Trans. Am. Nucl. Soc. Vol. 88 (2003), p.218.

[15] M.J. Berger and S.M. Seltzer: XCOM Photon Cross Sections, Version 3. 1, NISTIR (1999) http: /physics. nist. gov/PhysRefData/Xcom/Text/intro. htm.