Thermal, Dynamic Mechanical and Dielectric Behavior of Liquid-Crystalline Linear and Crosslinked Polyurethanes with Mesogenic Group in Side Chains


Article Preview

This paper describes DSC, dielectric and dynamic mechanical behavior of linear and crosslinked liquid crystalline (LC) polyurethanes based on LC diols with a mesogenic group in the side chain, diisocyanates of various flexibility and two triols. From our investigations it follows: a) Linear polymers prepared from diols with simple end side chain substituents (as hydrogen, nitro and nitril group) exhibit only amorphous behavior regardless of the structure of used diisocyanate; generally, the most pronounced LC behavior exhibited polymers prepared from a diol with phenyl substituent. b) Investigation of the curing reaction showed that rheological power-law parameters, which are characteristic of the structure at the gel point, are dependent on the initial ratio of the reactants (amount of LC diol in EANCs). c) Strong physical interactions between the mesogens support the cyclization in the course of crosslinking reaction. d) Introduction of chemical junctions (amount of triols) suppresses LC ordering in the networks.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic




M. Ilavsky et al., "Thermal, Dynamic Mechanical and Dielectric Behavior of Liquid-Crystalline Linear and Crosslinked Polyurethanes with Mesogenic Group in Side Chains ", Materials Science Forum, Vol. 518, pp. 367-374, 2006

Online since:

July 2006




[1] K.C. Frisch and D. Klempner: Advances in Urethane Science and Technology (Technomic Publishing AG, Basel 1996), Vol. 13.

[2] A. Ciferri, W.R. Krikbaum and R.B. Meyer: Polymer Liquid Crystals (Academic Press, N.Y. 1982).

[3] S.M. Aharoni and S.F. Edwards: Adv. Polym. Sci. Vol. 118 (1994), p.1.

[4] B. Szczepaniak, K.C. Frisch, P. Penczek, J. Mejsner, I. Leszcynska and E. Rudnik: J. Polym. Sci., Polym. Chem. Vol. 31 (1993), p.3223.

[5] H. Valentová, K. Bouchal, J. Nedbal and M. Ilavský: J. Macromol. Sci., Polym. Phys. Vol. 38 (1999), p.51.

[6] H. Valentová, Z. Sedláková, J. Nedbal and M. Ilavský: Eur. Polym. J. Vol. 37 (2001), p.1511.

[7] E. Akiyama and N. Koide: Liquid Crystals Vol. 14 (1993), p.1645.

[8] C.B. McArdle ed.: Side Chain Liquid Crystal Polymers (Blackie, Glasgow and London 1989).

[9] H. Finkelmann, M. Happ, M. Portugall and H. Ringsdorf: Makromol. Chem. Vol. 179 (1978), p.2541.

[10] J.B.H. Rottink, K. teNijenhuis, R. Addink and W. Mijs: Polym. Bull. Vol. 31 (1993), p.487.

[11] M. Wübbenhorst, E. van Koten, J. Jansen, W. Mijs and J. van Turnhout: Macromol. Rapid Commun. Vol. 18 (1997), p.139.

[12] Y.A. Demchenko, M. Studenovský, Z. Sedláková, I. Šloufová, J. Baldrian and M. Ilavský: Eur. Polym. J. Vol. 39 (2003), p.437.

[13] S. Havriliak and S. Negami: Polymer Vol. 8 (1967), p.161.

[14] D.W. Marquardt: J. Soc. Indian Appl. Math. Vol. 11 (1963), p.431.

[15] J.D. Ferry: Viscoelastic Properties of Polymers, 3 rd ed. (Wiley, N.Y. 1980).

[16] P.J. Flory: Principles of Polymer Chemistry (Cornell University Press, Ithaca, N.Y. 1953).

[17] J.C. Scanlan and H.H. Winter: Macromolecules Vol. 24 (1991), p.47.

[18] M. Ilavský and K. Dušek: Polymer Vol. 24 (1983), p.981.

Fetching data from Crossref.
This may take some time to load.