Molecular Modeling of New Dioxomolybdenum(VI) Complexes with Heteroalicyclic Dithiocarbamates. In Silico Models for Metal–Implant Coating within Living Systems


Article Preview

A huge variety of nano-objects, allowing specific reactions at well-defined positions can be generated using oxo-molybdenum compounds based building blocks and fragments. On the other side, the use of suphur-based interfaces as metal-based organic materials is a new area with many potential applications in medicine, particularly as implants. In that respect, as precursors for building new materials with pronounced characteristics five new dioxomolybdenum(VI) complexes of the general formula [MoO2(Rdtc)2] have been used in the present work. Their predicted geometries optimized by the MO calculations are in excellent agreement with the reported crystal structure data, and therefore can be used as models for docking study between complexes and biomolecules. In silico screening for complex-protein interaction will be able to predict behavior of such materials implanted in living systems.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic






S.P. Sovilj et al., "Molecular Modeling of New Dioxomolybdenum(VI) Complexes with Heteroalicyclic Dithiocarbamates. In Silico Models for Metal–Implant Coating within Living Systems", Materials Science Forum, Vol. 518, pp. 411-416, 2006

Online since:

July 2006




[1] M. Coughlan, Ed.: Molybdenum and Molybdenum-Containing Enzymes (Pergamon Press, New York 1980).

[2] R.H. Holm: Coord. Chem. Rev. Vol. 100 (1990), p.183.

[3] J.H. Enemark, J. Jon, A. Cooney, J.J. Wang, and R.H. Holm: Chem. Rev. Vol. 104 (2004), p.1175.

[4] N. Hackerman, D.D. Justice and E. McCafferty: Corrosion Vol. 31 (1975), p.240.

[5] V.M. Jovanović, K. Babić-Samardžija and S.P. Sovilj: Electroanalysis Vol. 13 (2001), p.1129.

[6] N.K. Kaushik, B. Bushan and A.K. Sharma: Trans. Met. Chem. Vol. 9 (1984), p.250.

[7] T. Kitson: Educ. Chem. Vol. 22 (1994), p.438.

[8] N.S. Agar, J.R. Mahoney and J.W. Eaton: Biochem. Pharmacol. Vol. 41 (1991), p.985.

[9] J. Lahann, D. Klee, H. Thelen, H. Bienert, D. Vorwerk and H. Höcker: J. Mater. Sci.: Materials in Medicine Vol. 10 (1999), p.443.

[10] J. Lahann, M. Balcells, T. Rodon, J. Lee, I.S. Choi, K.F. Jensen and R. Langer: Langmuir Vol. 18 (2002), p.3632.

[11] J.P. Simpson and S.G. Steinemann: PCT Int. Appl. WO 2002007792 (2002).

[12] S. Sugio, A. Kashima, S. Mochizuki, M. Noda and K. Kobayashi: Protein Eng. Vol. 12 (1999), p.439; http: /pdbbeta. rcsb. org/, search term 1AO6.

[13] S.P. Sovilj, D.M. Mitić and V.M. Leovac: Asian J. Chem. Vol. 15 (2003), p.165.

[14] Hyperchem 7. 5. 2 - Proffesional by Hypercube Inc. Gainesville, FL, USA.

[15] A. Pedretti, L. Villa and G. Vistoli: J. Comp. Aid. Mol. Des. Vol. 18 (2004), p.167; http: /www. ddl. unimi. it.

[16] L. Stelzig, S. Kotte and B. Krebs: J. Chem. Soc. Dalton Trans. Vol. 17 (1998), p.2921.

[17] H. Teruel, Y.C. Gorrin and L.R. Falvello: Inorg. Chim. Acta Vol. 316 (2001), p.1.

[18] W.P. Griffith: Coord. Chem. Rev. Vol. 5 (1970), p.459.

[19] K. Unoura, A. Yamazaky, A. Nagasawa, H. Itoh, H. Kudo and Y. Fukuda: Inorg. Chim. Acta, Vol. 269 (1998), p.260.

In order to see related information, you need to Login.