Microstructural Analysis of Fatigue Initiation in Al-Si Casting Alloys


Article Preview

Fatigue initiation behaviour in three multi-component Al-Si casting alloys with varying Si content is compared using a range of microscopy and analytical techniques. A higher proportion of stiffer secondary phases leads to load transfer effects reducing particle cracking and particle/matrix debonding. Si appears stronger than the Al9FeNi phase, which cracks and debonds to form initiation sites preferentially over Si. Reducing Si content results in clusters of intermetallics forming, and increased porosity. The effect of porosity, combined with mesoscopic load transfer effects to the high volume fraction intermetallic regions make these potent crack initiation sites in low silicon alloys.



Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd




A. J. Moffat et al., "Microstructural Analysis of Fatigue Initiation in Al-Si Casting Alloys", Materials Science Forum, Vols. 519-521, pp. 1083-1088, 2006

Online since:

July 2006




[1] Zhang, B., D.R. Poirier, and W. Chen: Met and Mats Trans A:, 1999. 30(10): pp.2659-2666.

[2] Edwards, W.M.: et al. Proc. ICAA8, Jul 2-5. 2002. Cambridge, United Kingdom.

[3] Wang, Q.G., D. Apelian, and D.A. Lados,: Journal of Light Metals, 2001. 1(1): pp.73-84.

[4] Gall, K., et al.: Met and Mats Trans A, 1999. 30A(12): pp.3079-3088.

[5] Stolarz, J., O. Madelaine-Dupuich, and T. Magnin: Mats. Sci. Eng. A, 2001. 299(1-2): p.275.

[6] Joyce, M.R., C.M. Styles, and P.A.S. Reed: Int. J. Fat., 2003. 25(9-11): pp.863-869.

[7] Edwards, W.M.: PhD Thesis in Institute of Polymer Technology and Materials Engineering. 2002, Loughborough University: Loughborough.

[8] Underwood, E.E., Quantitative Stereologogy. (Addison-Wesley Publishing Company, Reading, MA 1970).

[9] Seniw, M.E., J.G. Conley, and M.E. Fine: Mats. Sci. and Eng. A, 2000. 285(1-2): pp.43-48.

[10] Elliot, R., Eutectic Solidification Processing Crystalline and Glassy Alloys. (Butterworths, London 1983).

[11] Ye, H: Journal of Materials Engineering and Performance, 2003. 12(3): pp.288-297.

[12] Tabor, D., The Hardness of Metals. (Oxford University Press, London 1951).

[13] Eshelby, J. D: Proc, of the Royal Society of London, Series A, 1957. 241(1226): pp.376-396.

[14] Clyne, T.W. and P.J. Withers, An Introduction to metal matrix composites (Cambridge University Press, Cambridge 1993).