Synthesis of Aluminium Based Bulk Materials from Micro and Nano Particles Using Back Pressure Equal Channel Angular Consolidation


Article Preview

An innovative process for synthesising bulk materials using particles has been developed. The process is termed back pressure equal channel angular consolidation (BP-ECAC). Aluminium based materials were successfully consolidated into bulk materials using particles from nano to micro scales. BP-ECAC allowed the particles to be used directly without pre-compacting and casing and the processing temperatures to be significantly lower than those used in conventional sintering. Fully dense bulk samples were obtained instantaneously as the particles were forced to pass the shearing zone under pressure. Nanostructured materials were obtained from the nanometre-sized Al particles. Significant strengthening of the consolidated materials were observed. The new process is promising in producing porosity free, large volume materials with special compositions and structures.



Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd




X. L. Wu and K. Xia, "Synthesis of Aluminium Based Bulk Materials from Micro and Nano Particles Using Back Pressure Equal Channel Angular Consolidation", Materials Science Forum, Vols. 519-521, pp. 1215-1220, 2006

Online since:

July 2006




[1] B. S. Murty and S. Ranganathan: Inter. Mater. Rev. Vol. 43 (1998), p.1.

[2] L. A. Jacobson and J. McKittrick: Mater. Sci. Eng. Vol. R11 (1994), p.355.

[3] S. C. Tjong and H. Chen: Mater. Sci. Eng. Vol. R45 (2004), p.1.

[4] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

[5] J. F. Löffler: Intermetallics Vol. 11 (2003), p.529.

[6] W. H. Wang, C. Dong and C. H. Shek: Mater. Sci. Eng. Vol. R44 (2004), p.45.

[7] E. Y. Gutmanas: Prog. Mater. Sci. Vol. 34 (1990), p.261.

[8] B. Q. Han and E. J. Lavernia: Adv. Eng. Mater. Vol. 7 (2005), p.457.

[9] E. Y. Gutmanas, L. I. Trusov and I. Gotman: Nanostructured Materials Vol. 4 (1994), p.893.

[10] K. Okazaki: Mater. Sci. Eng. Vol. A287 (2000), p.189.

[11] Z. Lee, F. Zhou, R. Z. Valiev, E. J. Lavernia and S. R. Nutt: Scr. Mater. Vol. 51 (2004), p.209.

[12] K. Matsuki, T. Aida, T. Takeuchi, J. Kusui and K. Yokoe: Acta Mater. Vol. 48 (2000), p.2625.

[13] M. Haouaoui, I. Karaman, H. J. Maier and K. T. Hartwig: Metall. Mater. Trans. A Vol. 35A (2004), p.2935.

[14] K. Xia and X. Wu: Scr. Mater. Vol. (2005), p.1225.

[15] X. Wu and K. Xia: Mater. Sci. Forum Vol. 503-504 (2006), p.233.

[16] A. Yamashita, Z. Horita and T. G. Langdon: Mater. Sci. Eng. Vol. A300 (2001), p.142.

[17] Q. S. M. Kwok, R. C. Fouchard, A. -M. Turcotte, P. D. Lightfoot, R. Bowes and D. E. G. Jones: Propellants, Explosives, Pyrotechnics Vol. 27 (2002), p.229.