Application of a Mathematical Model to Simulate Multi-Pass Hot Rolling of Aluminium Alloy AA5083

Abstract:

Article Preview

A mathematical model has been developed and validated to predict deformation, temperature and microstructure evolution during multi-pass hot rolling of an AA5083 aluminum alloy. The validated model was employed to examine the effect of changing the number of rolling passes and the strain partitioning during multi-pass rolling on the material stored energy and the resulting microstructure. Results indicate that the number of rolling passes has a significant effect on the material stored energy. In addition, the way the strain is partitioned in two-pass rolling cases affects the material stored energy with decreasing strain/pass providing the highest stored energy in the material after rolling and vice versa. The reason behind these results was further investigated indicating that the thermal evolution during rolling may significantly influence the material stored energy and subsequent recrystallization kinetics.

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd

Pages:

1473-1478

DOI:

10.4028/www.scientific.net/MSF.519-521.1473

Citation:

H. Ahmed et al., "Application of a Mathematical Model to Simulate Multi-Pass Hot Rolling of Aluminium Alloy AA5083", Materials Science Forum, Vols. 519-521, pp. 1473-1478, 2006

Online since:

July 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.