Modelling of Microstructure and Texture and the Resulting Properties during the Thermo-Mechanical Processing of Aluminium Sheets


Article Preview

In order to predict the mechanical properties of Al sheet products, the evolution of microstructure and crystallographic texture along the process chain must be tracked. During the thermo-mechanical processing in commercial production lines the material experiences a complex history of temperature, time and strain paths, which results in alternating cycles of deformation and recrystallization with the associated changes in texture and microstructure. In the present paper the texture evolution of AA 3104 can body stock is modelled. In particular, the earing behaviour at final gauge is linked to the decisive steps of deformation and recrystallization along the thermomechanical process chain. For this purpose, the textures predicted by a comprehensive throughprocess model of the texture evolution during the thermo-mechanical production of Al sheet are input into a polycrystal-plasticity approach to simulate earing of the final gauge sheets.



Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd




O. Engler, "Modelling of Microstructure and Texture and the Resulting Properties during the Thermo-Mechanical Processing of Aluminium Sheets", Materials Science Forum, Vols. 519-521, pp. 1563-1568, 2006

Online since:

July 2006





[1] W.B. Hutchinson, A. Oscarsson and Å. Karlsson: Mater. Sci. Tech. Vol. 5 (1989), p.1118.

[2] A.S. Malin and B.K. Chen: in Aluminum Alloys for Packaging, eds. J.G. Morris et al. (TMS, Warrendale PA 1993), p.251.

[3] J. Hirsch, P. Wagner and H. Schmiedel: Mater. Sci. Forum Vols. 217-222 (1996), p.641.

[4] B. Ren: in Aluminum Alloys for Packaging III, ed. S.K. Das (TMS, Warrendale PA 1998), p.49.

[5] F.J. Humphreys and M. Hatherly: in Recrystallization and Related Annealing Phenomena (Pergamon, Oxford 1995), p.397.

[6] J. Hirsch, K. Karhausen and P. Wagner: Mater. Sci. Forum Vols. 331-337 (2000), p.421.

[7] J. Hirsch, K.F. Karhausen and O. Engler: in Continuum Scale Simulation of Engineering Materials: Fundamentals, eds. D. Raabe, F. Roters, F. Barlat and L. -Q. Chen (Wiley-VCH Verlag, Berlin 2004), p.643.


[8] O. Engler: Mater. Sci. Forum Vols. 426-432 (2003), p.3655.

[9] O. Engler, L. Löchte and K. Karhausen: Mater. Sci. Forum Vols. 495-497 (2005), p.555.

[10] M. Crumbach, G. Pomana, P. Wagner and G. Gottstein: in Proc. 1 st Joint Int. Conf. on Recrystallization and Grain Growth, eds. G. Gottstein, D.A. Molodov (Springer, Berlin 2001), p.1053.

[11] O. Engler, M. Crumbach and S. Li: Acta Mater. Vol. 53 (2005), p.2241.

[12] H.E. Vatne, T. Furu, R. Ørsund, and E. Nes: Acta Mater. Vol. 44 (1996), p.4463.


[13] J.A. Sæter, B. Forbord, H.E. Vatne and E. Nes: in Proc. ICAA6, eds. T. Sato et al. (JILM, Japan 1998), p.113.

[14] O. Engler: Textures and Microstr. Vol. 32 (1999), p.197.

[15] G. Gottstein, M. Schneider and L. Löchte: in Proc. ICAA9, eds. J.F. Nie, A.J. Morton and B.C. Muddle (Inst. Mater. Eng. Australasia Ltd. 2004), p.1116.

[16] O. Engler and S. Kalz: Mater. Sci. Eng. Vol. A373 (2004), p.350.