Nucleation-Mediated Structural Refinement and Aluminium Alloy Design

Abstract:

Article Preview

Regardless of whether it is cast microstructure, the grain structure that is the product of thermomechanical processing or the nanoscale dispersions of strengthening second-phase particles, it is inescapable that the structural scale that controls mechanical properties in Al alloys is determined primarily by processes of nucleation during either solidification, recrystallisation or solid-state phase transformation. In those advanced alloys with bulk amorphous or nanocrystalline structure, production of an amorphous precursor is reliant on initial suppression of the nucleation of crystallisation, and subsequent controlled nucleation of dispersed nanocrystals within amorphous matrix. The processes of nucleation that control structural scale in modern Al alloys are briefly reviewed, with a focus on potential for further structural refinement and advances in properties.

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd

Pages:

191-196

DOI:

10.4028/www.scientific.net/MSF.519-521.191

Citation:

B. C. Muddle and J. F. Nie, "Nucleation-Mediated Structural Refinement and Aluminium Alloy Design", Materials Science Forum, Vols. 519-521, pp. 191-196, 2006

Online since:

July 2006

Export:

Price:

$38.00

[1] J.D. Embury and C.W. Sinclair, Mater. Sci. Eng., A319-21, 37-45, (2001).

[2] D.G. McCartney, Int. Mater. Rev., 34, 247-60, (1989).

[3] A.L. Greer, Phil. Trans. R. Soc., 361, 479-95, (2003).

[4] B. Cantor, Phil. Trans. R. Soc., 361, 409-17, (2003).

[5] M. Easton and D.H. StJohn, Metall. Mater. Trans., 30A, 1613-23, (1999).

[6] M. Easton and D.H. StJohn, Metall. Mater. Trans., 30A, 1625-33, (1999).

[7] P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher and A.H. Green, Mater. Sci. Tech., 14, 394-404, (1998).

[8] N. Iqbal, N.H. van Dijk, S.E. Offerman, M.P. Moret, L. Katgerman and G.J. Kearley, Acta Mater., 53, 2875-80, (2005).

DOI: 10.1016/j.actamat.2005.02.045

[9] H.J. McQueen and W. Blum, Proc. 6 th Int. Conf. on Aluminium Alloys, (T. Sato, S. Kumai, T. Kobayashi and Y. Murakami, eds), Japan Inst. of Light Metals, pp.99-112, (1998).

[10] R.Z. Valiev, Annales de Chimie: Science des Materiaux, 21, 369, (1996).

[11] J.F. Nie and B.C. Muddle, J. Phase Equilibria, 19, 543-51, (1998).

[12] J.F. Nie, H.I. Aaronson and B.C. Muddle, in Advances in the Metallurgy of Aluminium Alloys, (M. Tiryakioglu, ed. ), ASM International, pp.229-38, (2001).

[13] D.B. Williams and J.W. Edington, Acta Metall., 24, 323-32, (1976).

[14] J.F. Nie and B.C. Muddle, Mater. Forum, 23, 23-40, (1999).

[15] G.B. Winkelman, PhD Thesis, Monash University, (2003).

[16] V. Perovic, G.R. Purdy and L.M. Brown, Acta Metall., 29, 889-902, (1981).

[17] L. Bourgeois, J.F. Nie and B.C. Muddle, Philos. Mag., 85, 3489-3509, (2005).

[18] S.P. Ringer, K. Hono, I.J. Polmear and T. Sakurai, Acta Mater., 44, 1883-1898, (1996).

[19] X. Gao, J.F. Nie and B.C. Muddle, Mater. Sci. Forum, 217-222, 1251-1256, (1996).

[20] I.J. Polmear, Light Alloys - From Traditional Alloys to Nanocrystals, Elsevier ButterworthHeinemann, 4 th edition, (2006).

[21] R.N. Lumley, I.J. Polmear and A.J. Morton, Mater. Sci. Tech., 19, 1483-1490, (2003).

[22] R.N. Lumley, I.J. Polmear and A.J. Morton, Mater. Forum, 28, 85-95, (2004).

[23] M. Goune, A. Redjaimia and C.R. Hutchinson, in Proc. Int. Conf. on Phase Transformations in Inorganic Materials, TMS, Warrendale, in press (2005).

[24] Ch-A. Gandin, Y. Brechet, M. Rappaz, G. Canova, M.F. Ashby and H. Shercliff, Acta Mater., 50, 901- 27, (2002).

In order to see related information, you need to Login.