Effect of Trace Addition of Sn in Al-Cu Alloy

Abstract:

Article Preview

The trace addition of Sn (0.01 at.%) to an Al-1.7Cu (at.%) alloy has been investigated using atom probe tomography (APT), transmission electron microscopy (TEM) and high resolution transmission electron microscope (HRTEM). We have studied samples in the as-quenched (AQ) condition and following ageing at both 160 and 200 °C for very short ageing times so as to better understand the early stages of the decomposition processes. Our data reveal independent Cu-Cu and Sn-Sn clusters in the AQ condition, though we did not observe Cu-Sn clustering. We observed for the first time that some of these initial Cu-clusters develop into GP zones during subsequent ageing at temperatures as high as 200 °C. The Sn atom clustering results in precipitation of independent 􀀂- Sn particles after aging for 30 sec. The GP zones consequently undergo reversion and this liberates Cu atoms which seem to participate in a cluster-assisted heterogeneous nucleation of the 􀀃􀀂 phase at the interface of the 􀀂-Sn. For ageing at 200 °C, this process is complete within 180 sec.

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd

Pages:

203-208

DOI:

10.4028/www.scientific.net/MSF.519-521.203

Citation:

T. Honma et al., "Effect of Trace Addition of Sn in Al-Cu Alloy", Materials Science Forum, Vols. 519-521, pp. 203-208, 2006

Online since:

July 2006

Export:

Price:

$35.00

[1] H. K. Hardy. J. Inst. Met. Vol. 80 (1951-1952), p.483.

[2] S. P. Ringer, K. Hono. Mater. Charact. Vol. 44 (2000), p.101.

[3] J. F. Nie, B. C. Muddle, H. I. Aaronson, S. P. Ringer, J. P. Hirth. Metal. Mater. Trans. A Vol. 33A (2002), p.1649.

[4] J. M. Silcock. Phil. Mag. Vol. 5 (1959), p.1187.

[5] J. D. Boyd, R. B. Nicholson. Acta Met. Vol. 19 (1971), p.1101.

[6] R. Sankaran, C. Laird. Mater. Sci. Eng. Vol. 14 (1974), p.271.

[7] E. Holmes, B. Noble. J. Inst. Met. Vol. 95 (1967), p.106.

[8] H. Suzuki, M. Kanno, K. Hukunaga. J. Japan Inst. Met. Vol. 38 (1974), p.287.

[9] S. P. Ringer, K. Hono, T. Sakurai. Metal. Mater. Trans. A Vol. 26A (1995), p.2207.

[10] X. Gao, J. F. Nie, B. C. Muddle: Proc. Inter. Conf. Solid-Solid Phase Trans. Edited by M. Koiwa, K. Otsuka, T. Miyazaki (JIM, Japan 1999, p.225).

[11] J. M. Silcock, H. M. Flower. Scripta Mater. Vol. 46 (2002), p.389.

[12] L. Bourgeois, J. F. Nie, B. C. Muddle. Phil. Mag. Vol. 85 (2005), p.3487.

[13] T. F. Kelly, T. T. Gribb, J. D. Olson, R. L. Martens, J. D. Shepard, S. A. Wiener, T. C. Kunicki, R. M. Ulfig, D. R. Lenz, E. M. Strennen, E Oltman, J. H. Bunton and D. R. Strait. Microsc. Microanal. Vol. 10 (2004), p.373.

DOI: 10.1017/s1431927604040565

[14] B. S. Everitt: The Analysis of Contingency Tables second edition (Chapman & Hall, Great Britain 1992).

[15] R. H. Beton, E. C. Rollason. J. Inst. Met. Vol. 86 (1957-58), p.77.

[16] V. A. Philips. Acta Met. Vol. 21 (1973), p.219.

[17] E. Matsubara, J. B. Cohen. ibid. Vol. 31 (1983), p.2129.

[18] K. Hono, T. Satoh, K. Hirano. Philo. Mag. A Vol. 53 (1986), p.495.

[19] H. Kimura, R. R. Hasiguti. Acta Met. Vol. 9 (1961), p.1076.

In order to see related information, you need to Login.