Precipitation Hardening in Al-Cu-Mg Alloys: Analysis of Precipitates, Modelling of Kinetics, Strength Predictions


Article Preview

In Al-Cu-Mg with compositions in the α+S phase field, precipitation hardening is a twostage process. Experimental evidence shows that the main precipitation sequence in alloys with Cu contents in excess of 1wt% is involves Cu-Mg co-clusters, GPBII/S'' and S. The first stage of the age hardening is due to the formation of Cu-Mg co-clusters, and the hardening can be modelled well by a modulus hardening mechanism. The appearance of the orthorhombic GPBII/S'' does not influence the hardness. The second stage of the hardening is due to the precipitation of S phase, which strengthens the alloy predominantly through the Orowan looping mechanism. These findings are incorporated into a multi-phase, multi mechanism model for yield strength of Al-Cu-Mg based alloys. The model is applied to a range of alloys with Cu:Mg ratios between 0.1 and 1 and to heat treatments ranging from room temperature ageing and artificial isothermal ageing to rapid heating to the solution treatment temperature. The predictive capabilities of this model are reviewed and its constitutive components are compared and contrasted with a range of other methods, such as the Kampmann-Wagner and JMAK models for precipitation as well as the LSW model for coarsening.



Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd




M. J. Starink and J.L. Yan, "Precipitation Hardening in Al-Cu-Mg Alloys: Analysis of Precipitates, Modelling of Kinetics, Strength Predictions", Materials Science Forum, Vols. 519-521, pp. 251-258, 2006

Online since:

July 2006




[1] M.J. Starink: J. Mater. Sci., Vol. 36 (2001), pp.4433-4441.

[2] R. Kampmann, R. Wagner, in: P. Haasen, V. Gerold, R. Wagner, M.F. Ashby (Eds. ), Decomposition of Alloys: the Early Stages, Pergamon Press, New York, 1983, p.91.

[3] S.C. Wang, M.J. Starink: Int Mater Rev., Vol. 50 (2005), p.193.

[4] L. Davin: PhD thesis, Oxford University, UK (2005).

[5] M.J. Starink, N. Gao, L. Davin, J. Yan, A. Cerezo: Phil. Mag., Vol. 85 (2005), pp.1395-1418.

[6] Y.A. Bagaryatsky, Dokl Akad SSSR, Vol. 87 (1952), p.397 & p.559.

[7] S.C. Wang, M.J. Starink and N. Gao, Scr. Mater., Vol. 54 (2006), pp.287-291.

[8] A. Charai, T. Walther, C. Alfonso, A. -M. Zahra, C.Y. Zahra: Acta Mater., Vol. 48 (2000), p.2751.

[9] S.C. Wang, M.J. Starink, Mater. Sci. Eng. A, Vol. 386 (2004) p.156.

[10] L. Kovarik, P.I. Gouma, C. Kisielowski, S.A. Court, M.J. Mills: Acta Mater., Vol. 52 (2004), p.2509.

[11] M.J. Starink, C.Y. Zahra and A. -M. Zahra, J. Therm. Anal. Calorim., Vol. 51 (1998), p.933.

[12] M.J. Starink: Int. Mater. Rev., Vol. 49 (2004), pp.191-226.

[13] M.J. Starink and S.C. Wang, Acta Mater., 2003, Vol. 51, pp.5131-5150.

[14] J. Yan: PhD thesis, University of Southampton (2006).

[15] M. F. Ashby: Phil. Mag., Vol. 14 (1966) 1157.

[16] M.J. Starink: Thermochim. Acta, Vol. 404 (2003), pp.163-176.

[17] W. L. Fink, D. W. Smith and L. A. Willey, in: Age hardening of metals, pp.31-55, 1940, ASM.

[18] K. Raviprasad, C.R. Hutchinson, T. Sakurai, S.P. Ringer: Acta Mater., Vol. 51 (2003) p.5037.

[19] L. Kovarik, P.I. Gouma, C. Kisielowski, S.A. Court, M.J. Mills: Mater. Sci. Eng. A, Vol 387- 389 (2004) pp.326-330.

[20] H. Martinod, C. Renon, and J. Calvet: Rev. Metall., Vol. 63 (1966) pp.815-821.

[21] K. Raviprasad et al., ICAA9, 2-5 August 2004, Brisbane, Australia (poster).

[22] G.B. Winkelman, K. Raviprasad, B.C. Muddle, Mater Sci Forum, Vol 396 (2002) pp.1037-1042.

[23] M.J. Starink, I. Sinclair, N. Gao, N. Kamp, P.J. Gregson, P. Pitcher, A. Levers and S. Gardiner: Mater. Sci. Forum, Vol. 396-402 (2002) 601-606.


[24] M.J. Starink, S.C. Wang and I. Sinclair, in Friction Stir Welding and Processing III, Ed. Kumar V. Jata, M.W. Mahoney and R.S. Mishra (TMS, 2005) pp.139-148.

Fetching data from Crossref.
This may take some time to load.