A Multi-Mechanistic Model for Precipitation Strengthening in Al-Cu-Mg Alloys during Non-Isothermal Heat Treatments


Article Preview

A multi-mechanistic model for microstructure development and strengthening during nonisothermal treatment of precipitation strengthened Al-Cu-Mg based alloys is derived. The formation kinetics of the precipitates is modelled using the Kampmann and Wagner numerical model that accounts for complete transformation from the nucleation to the coarsening stages. The increase in critical resolved shear strength of the grains due to the precipitates is based on two mechanisms i.e. the modulus strengthening mechanism for the shearable Cu:Mg co-clusters and the Orowan strengthening mechanism for the non-shearable S phase precipitates. The contributions due to solute and dislocation strengthening are also included in the strength calculations. The model is verified by comparing the predicted results with differential scanning calorimetery and hardness data on 2024 aluminium alloys. The microstructural development and strength/hardness predictions of the model are in reasonable agreement with the experimental data and the differences are discussed in terms of requirements for further model development.



Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd




I.N. Khan and M. J. Starink, "A Multi-Mechanistic Model for Precipitation Strengthening in Al-Cu-Mg Alloys during Non-Isothermal Heat Treatments", Materials Science Forum, Vols. 519-521, pp. 277-282, 2006

Online since:

July 2006




[1] B.B. Verma, J.D. Atkinson and M. Kumar: Bull. Mater. Sci., Vol. 24 (2001), p.231.

[2] K. Raviprasad, C.R. Hutchinson, T. Sakurai, S.P. Ringer: Acta Mater., Vol. 51 (2003), p.5037.

[3] G. Liu, G.J. Zhang, X.D. Ding, J. Sun, K.H. Chen: Mater. Sci. Engg. A, Vol. 344 (2003), p.113.

[4] M.J. Starink and J. Yan: Proc. 1st Int. Symp. on Metall. Modelling for Al. Alloys, ASM Materials Solution 2003, Pittsburgh, USA, October 12-15 (2003), p.119.

[5] S.C. Wang and M.J. Starink: Int. Mater. Review, Vol. 50 (2005), p.193.

[6] S.P. Ringer, K. Hono, T. Sakurai and I.J. Polmear: Scripta Mater., Vol. 36 (1997), p.517.

[7] S.C. Wang, M.J. Starink and N. Gao: Scr. Mater., Vol. 54 (2006), p.287.

[8] S.P. Ringer, K. Hono, I.J. Polmear and T. Sakurai: Appl. Surface Sci., Vol. 94-95 (1996), p.253.

[9] R. Wagner and R. Kampmann, in Mater. Sci. Tech.: A Comprehensive Treat.: Phase Transf. in Mater., Ed. by R. Cahn, P. Haasen and E.J. Kramer, Wiley-VCH, Vol. 5 (1990), p.215.

[10] A. Deschamps and Y. Brechet: Acta Mater., Vol. 47 (1999), p.293.

[11] J.D. Robson: Acta Mater., Vol. 52 (2004), p.1409.

[12] A.W. Zhu and E.A. Starke: Acta Mater., Vol. 47 (1999), p.3263.

[13] H. R. Shercliff and M.F. Ashby: Acta Metall. Mater., Vol. 38 (1990), p.1789.

[14] M. F. Ashby: Phil. Mag., Vol. 14 (1966), p.1157.

[15] M.J. Starink and S.C. Wang: Acta Mater., Vol. 51 (2003), p.5131.

[16] E. Nembach: Acta Mater., Vol. 40 (1992), p.3325.

[17] B. Clausen, T. Lorentzen and T. Leffers: Acta Mater., Vol. 46 (1998), p.3087.

[18] M.J. Starink, I. Sinclair, N. Gao, N. Kamp, P.J. Gregson, P.D. Pitcher, A. Levers and S. Gardiner: Mater. Sci. Forum, Vol. 396-402 (2002), p.601.

DOI: https://doi.org/10.4028/www.scientific.net/msf.396-402.601

[19] M.J. Starink: Int. Mater. Rev., Vol. 49 (2004), p. (1916).

[20] M.J. Starink, N. Gao and J.L. Yan: Mater. Sci. Engg. A, Vol. 387-389 (2004), p.222.

[21] N. Gao, L. Davin, S. Wang, A. Cerezo and M.J. Starink, Mater. Sci. Forum, Vol. 396-402 (2002), p.923.