Characterisation of Intermetallic Phases in Multicomponent Al-Si Casting Alloys for Engineering Applications

Abstract:

Article Preview

Multicomponent Al-Si based casting alloys are used for a variety of engineering applications. The presence of additional elements in the Al-Si alloy system allows many complex intermetallic phases to form, which make characterisation non-trivial due to the fact that some of the phases have either similar crystal structures or only subtle changes in their chemistries. A combination of electron backscatter diffraction (EBSD) and energy dispersive X-ray analysis (EDX) have therefore been used for discrimination between the various phases. It is shown that this is a powerful technique for microstructure characterisation and provides detailed information which can be related to microstructure evolution during initial casting and subsequent heat treatment. The mechanical properties of different intermetallic phases have been investigated as a function of temperature using the nanoindentation technique. In particular, the hardness and modulus of a number of phases have been established for a range of alloy compositions. Physical properties of some of the intermetallic phases are also discussed. Phase identity, composition, physical and mechanical properties are set in context to inform alloy design strategies.

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd

Pages:

359-364

DOI:

10.4028/www.scientific.net/MSF.519-521.359

Citation:

C.L. Chen, G.D. West, R. C. Thomson, "Characterisation of Intermetallic Phases in Multicomponent Al-Si Casting Alloys for Engineering Applications", Materials Science Forum, Vols. 519-521, pp. 359-364, 2006

Online since:

July 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.