Processing of Aluminium Alloys by Severe Plastic Deformation

Abstract:

Article Preview

Processing through the application of severe plastic deformation (SPD) has become important over the last decade because it is now recognized that it provides a simple procedure for producing fully-dense bulk metals with grain sizes lying typically in the submicrometer range. There are two major procedures for SPD processing. First, equal-channel angular pressing (ECAP) refers to the repetitive pressing of a metal bar or rod through a die where the sample is constrained within a channel bent through an abrupt angle at, or close to, 90 degrees. Second, high-pressure torsion (HPT) refers to the procedure in which the sample, generally in the form of a thin disk, is subjected to a very high pressure and concurrent torsional straining. Both of these processes are capable of producing metallic alloys with ultrafine grain sizes and with a reasonable degree of homogeneity. Furthermore, the samples produced in this way may exhibit exceptional mechanical properties including high strength at ambient temperature through the Hall-Petch relationship and a potential superplastic forming capability at elevated temperatures. This paper reviews these two procedures and gives examples of the properties of aluminum alloys after SPD processing.

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd

Pages:

45-54

DOI:

10.4028/www.scientific.net/MSF.519-521.45

Citation:

T. G. Langdon "Processing of Aluminium Alloys by Severe Plastic Deformation", Materials Science Forum, Vols. 519-521, pp. 45-54, 2006

Online since:

July 2006

Export:

Price:

$35.00

[1] E.O. Hall, Proc. Roy. Soc. B 64 (1951), p.747.

[2] N.J. Petch, J. Iron Steel Inst. 174 (1953), p.25.

[3] T.G. Langdon, Metall. Trans. 13A (1982), p.689.

[4] Y.T. Zhu, T.C. Lowe and T.G. Langdon, Scripta Mater. 51 (2004), p.825.

[5] H. Gleiter, Prog. Mater. Sci. 33 (1989), p.223.

[6] U. Erb, A.M. El-Sherik, G. Palumbo and K.T. Aust, Nanostruct. Mater. 2 (1993), p.383.

[7] C.C. Koch and Y.S. Cho, Nanostruct. Mater. 1 (1992), p.207.

[8] D.B. Witkin and E.J. Lavernia, Prog. Mater. Sci. 51 (2006), p.1.

[9] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Prog. Mater. Sci. 45 (2000), p.103.

[10] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov, Russian Metall. 1 (1981), p.99.

[11] V.M. Segal, Mater. Sci. Eng. A197 (1995), p.157.

[12] N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova and V.A. Sazonova, Fiz. Met. Metalloved 61 (1986), p.1170.

[13] A.P. Zhilyaev, G.V. Nurislamova, B. -K. Kim, M.D. Baró, J.A. Szpunar and T.G. Langdon, Acta Mater. 51 (2003), p.753.

DOI: 10.1016/s1359-6454(02)00466-4

[14] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T.G. Langdon, Scripta Mater. 35 (1996), p.143.

[15] K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon, Mater. Sci. Eng. A281 (2000), p.82.

[16] K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon, Metall. Mater. Trans. 29A (1998), p. (2011).

[17] R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch and B. Baudelet, Acta Mater. 44 (1996), p.4705.

[18] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Metall. Mater. Trans. 29A (1998), p.2503.

[19] Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev and T.G. Langdon, J. Mater. Res. 11 (1996), p.1880.

[20] G. Sakai, K. Nakamura, Z. Horita and T.G. Langdon, Mater. Sci. Eng. A406 (2005), p.268.

[21] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Acta Mater. 46 (1998), p.3317.

[22] M. Furukawa, Z. Horita and T.G. Langdon, Mater. Sci. Eng. A332 (2002), p.97.

[23] Y. Fukuda, K. Oh-ishi, M. Furukawa, Z. Horita and T.G. Langdon, Acta Mater. 52 (2004), p.1387.

[24] Z. Horita, T. Fujinami, M. Nemoto and T.G. Langdon, Metall. Mater. Trans. 31A (2000), p.691.

[25] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe, J. Mater. Res. 17 (2002), p.5.

[26] Y. Wang, E. Ma, R.Z. Valiev and Y. Zhu, Adv. Mater. 16 (2004), p.328.

[27] Z. Horita, K. Ohashi, T. Fujita, K. Kaneko and T.G. Langdon, Adv. Mater. 17 (2005), p.1599.

[28] H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon, Mater. Sci. Eng. A265 (1999), p.188.

[29] P.B. Berbon, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon, Mater. Trans. JIM 40 (1999), p.772.

DOI: 10.2320/matertrans1989.40.772

[30] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev and T.G. Langdon, Acta Mater. 45 (1997), p.4751.

[31] S. Lee, P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev and T.G. Langdon, Mater. Sci. Eng. A272 (1999), p.63.

[32] K. Higashi, M. Mabuchi and T.G. Langdon, ISIJ Intl. 36 (1996), p.1423.

[33] S.D. Terhune, D.L. Swisher, K. Oh-ishi, Z. Horita, T.G. Langdon and T.R. McNelley, Metall. Mater. Trans. 33A (2002), p.2173.

[34] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes and T.G. Langdon, Acta Mater. 48 (2000), p.3633.

In order to see related information, you need to Login.