Coherency Loss of Al3Sc Precipitates during Ageing of Dilute Al-Sc Alloys


Article Preview

Scandium additions are known to offer a number of benefits to aluminium alloy performance. Many of these benefits can be attributed to the precipitation of fine Al3Sc particles. These particles are fully coherent with the aluminium matrix when they are small, but can lose coherency as they grow or coarsen. In this work, the change in coherency has been studied in an Al- 0.12 wt%Sc alloy over the temperature range 300-425oC. Three coherency regimes were identified, consistent with previous observations. The time and temperature range over which coherency changes occur have been measured for a range of conditions and correlated with the precipitation kinetics and the predictions of a model for Al3Sc precipitation. The effect of the coherency change on the particle morphology has also been investigated.



Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd




D. Tsivoulas and J. D. Robson, "Coherency Loss of Al3Sc Precipitates during Ageing of Dilute Al-Sc Alloys", Materials Science Forum, Vols. 519-521, pp. 473-478, 2006

Online since:

July 2006




[1] L.S. Toropova, D.G. Eskin, M.L. Kharakterova, T.V. Dobatkina, Advanced Aluminium Alloys Containing Scandium: Structure and Properties, Gordon and Breach Science Publishers (1998).

[2] M.E. Drits, L.B. Ber, Yu.G. Bykov, L.S. Toropova, G.K. Anastas'eva, Physics of Metals and Metallography, 57 (1984) 118.

[3] J. Røyset, N. Ryum, International Materials Reviews, 50 (2005) 19.

[4] B.A. Parker, Z.F. Zhou, P. Nolle, Journal of Materials Science, 30 (1995) 452.

[5] I.J. Polmear, Light Alloys: Metallurgy of the Light Metals (3rd ed. ), Arnold (1995).

[6] V.G. Davydov, T.D. Rostova, V.V. Zakharov, Yu.A. Filatov, V.I. Yelagin, Materials Science and Engineering A, 280 (2000) 30.

[7] L.S. Kramer, W.T. Tack, M.T. Fernandes, Advanced Materials and Processes, 10 (1997) 23.

[8] A.F. Norman, P.B. Prangnell, R.S. McEwen, Acta Materialia, 46 (1998) 5715.

[9] T. Aiura, N. Sugawara, Y. Miura, Materials Science and Engineering A, 280 (2000) 139.

[10] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (2 nd Ed. ), Elsevier (2004).

[11] E.L. Bradley, R.A. Emigh, J.W. Morris, Scripta Metallurgica et Materialia, 25 (1991) 717.

[12] S. Komura, P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Scripta Materialia, 48 (1998) 1851.


[13] H. Akamatsu, T. Fujinami, Z. Horita, T.G. Langdon, Scripta Materialia, 44 (2001) 759.

[14] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, Van Nostrand Reinhold (1981).

[15] I.G. Brodova, I.V. Polents, O.A. Korzhavina, P.S. Popel, I.P. Korshunov, V.O. Esin, Melts, 4 (1992) 392.

[16] G.M. Novotny, A.J. Ardell, Materials Science and Engineering A, 318 (2001) 144.

[17] E.A. Marquis, D.N. Seidman, Acta Materialia, 49 (2001) (1909).

[18] T.J. Bastow, S. Celotto, Materials Science and Engineering C, 23 (2003) 757.

[19] J. Røyset, N. Ryum, Scripta Materialia, 52 (2005) 1275.

[20] J.D. Robson, M.J. Jones, P.B. Prangnell, Acta Materialia, 51 (2003) 1453.

[21] S. Iwamura, Y. Miura, Acta Materialia, 52 (2004) 591.

[22] D. Tsivoulas, Modelling Precipitation in Aluminium-Scandium Alloys, MSc Thesis, the University of Manchester (2005).

[23] C. Watanabe, T. Kondo, R. Monzen, Metallurgical and Materials Transactions A, 35 (2004) 3003.

[24] J. Røyset, N. Ryum, Materials Science and Engineering A, 396 (2005) 409.