Metal Dusting Reaction Mechanisms


Article Preview

Iron and nickel, model alloys of Ni-Cu and Fe-Cr, and commercial heat resisting alloys were exposed at 650-680oC to flowing CO-H2-H2O gases which were supersaturated with respect to carbon. All ferritic materials, including chromia and alumina formers, developed a coke deposit of carbon nanotubes, the growth of which was catalysed by nanoparticles of Fe3C. Austenitic materials formed graphite filaments and clusters in association with nanoparticles of austenite. Graphite cluster formation was suppressed by alloying copper with nickel. The sensitivity of coking kinetics to alloy copper content was consistent with a mechanism involving graphite nucleation within the subsurface metal. Chromia forming alloys resisted dusting until damage to the scale could no longer be repaired by Cr2O3 regrowth, and carbon gained access to chromium – depleted metal.



Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara




D. J. Young "Metal Dusting Reaction Mechanisms ", Materials Science Forum, Vols. 522-523, pp. 15-26, 2006

Online since:

August 2006





[1] R.F. Hochman, Proceedings of the Materials Engineering and Sciences Division Biennial Conference (1970), p.401.

[2] J.C. Nava Paz and H.J. Grabke, Oxid. Met. Vol. 39 (1993), p.437.

[3] H.J. Grabke, R. Krajak and J.C. Nava Paz, Corros. Sci. Vol. 35 (1993), p.1141.

[4] E. Pippel, J. Woltersdorf and R. Schneider, Mater. Corros. Vol. 49 (1998), p.309.

[5] H.J. Grabke, R. Krajak, E.M. Muller-Lorenz, S. Strauss, Mater. Corros. Vol. 47 (1996), p.495.

[6] C.M. Chun, J.D. Mumford, T.A. Ramanarayanan, J. Electrochem. Soc., Vol. 47 (2000), p.3680. 7. C.H. Toh, P.R. Munroe and D.J. Young, Oxid. Met. Vol. 58 (2002), p.1.

[8] C.H. Toh, P.R. Munroe, D.J. Young and K. Foger, Mater. High Temp., Vol. 20 (2003) p.129.

[9] C.H. Toh, P.R. Munroe and D.J. Young, Mater. High Temp., Vol. 20 (2003) p.527.

[10] T. Wade, H. Wada, J.F. Elliot and J. Chipman, J. Met. Trans. Vol. 2 (1971) p.2199.

[11] S.K. Bose and H.J. Grabke, Z. Metall. Vol. 69 (1978), p.8.

[12] P. Elliott and A. F. Hampton, Oxid. Met. Vol. 14 (1980), p.449.

[13] A. Schnaas and H. J. Grabke, Oxid. Met. Vol. 12 (1978) p.387.

[14] M.T. Tavares, I. Alstrup, C.A. Bernardo and J.R. Rostrup-Nielsen, J. Catal. Vol. 158 (1996) p.402.

[15] P.R.S. Jackson, D.L. Trimm and D.J. Young, J. Mater. Sci., Vol. 21 (1986) p.3125.

[16] J.Q. Zhang, D.M. Cole and D.J. Young, Mater. Corros., in press.

[17] C.A. Bernardo, I. Alstrup, J.R. Rostrup-Nielsen, J. Catal., Vol. 96 (1985), p.517.

[18] J.A. Dalmon, G.A. Martin, J. Catal., Vol. 66 (1980), p.214.

[19] M.T. Tavares, I. Alstrup, C.A. Bernardo, Mater. Corros., Vol. 50 (1999), p.681.

[20] L. Papagno, M. Conti, L.S. Caputi, J. Anderson and G.J. Lapeyere, Surface Sci. Vol. 219 (1989), p. L565.

[21] Q. Wei, E. Pippel, J. Woltersdorf, S. Strauss and H.J. Grabke, Mater. Corros. Vol. 51 (2000), p.652.

[22] A. Roney and D.J. Young, unpublished research, University of New South Wales (2005).

[23] Z. Zeng, K. Natesan and V.A. Maroni, Oxid. Met., Vol. 58 (2002), p.147.

Fetching data from Crossref.
This may take some time to load.