Wet Oxidation: A Promising Way for Fabrication of Zinc Oxide Nanostructures


Article Preview

A two-step deposition-oxidation method was successfully developed to fabricate zinc oxide thin films and nanostructures. Morphological observations clearly showed that a controllable growth of dense/porous oxide films, nanowhiskers, nanowires, and nanobelts could be obtained by controlling the deposition and oxidation conditions. Photoluminescence properties of the ZnO films were also studied. A strong and predominant ultra-violet near-band-edge emission could be observed on most of the samples, while a green or red color emission accompanying with a largely suppressed ultra-violet emission could be realized on the samples with different processing conditions. The results therefore indicated that ZnO films and structures with desirable microstructural and optical properties could be obtained with this deposition-oxidation technique under controllable conditions.



Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara




W. Gao and Z. W. Li, "Wet Oxidation: A Promising Way for Fabrication of Zinc Oxide Nanostructures", Materials Science Forum, Vols. 522-523, pp. 277-284, 2006

Online since:

August 2006





[1] D.C. Look: Mat. Sci. Eng Vol. 80B (2001), p.383.

[2] Y.F. Chen, D. Bagnall and T. Yao: Mat. Sci. Eng Vol. 75B (2000), p.190.

[3] T. Minami: Semicond. Sci. Tech Vol. 20 (2005), p. S35.

[4] S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong and J.B. Ketterson: Appl. Phys. Lett Vol. 75 (1999), p.2761.

[5] W. Gao, Z.W. Li, R. Harikisun and S.S. Chang: Mat. Lett Vol. 57 (2003), p.1435.

[6] Z.W. Li: Annual Progress Report to Foundation for Research, Science and Technology, New Zealand (2004).

[7] Z.W. Li, W. Gao and R. Reeves: Surf. Coat. Technol Vol. 198 (2005), p.319.

[8] G.W. Sears: Acta Metallurgica Vol. 3 (1955), p.367.

[9] Z.W. Pan, Z.R. Dai and Z.L. Wang: Science Vol. 291 (2001), p. (1947).

[10] W.K. Burton, N. Cabrera and F.C. Frank: Phil. Trans. Royal Soc. London. Series A, Math. Phys. Sci Vol. 243 (1951), p.299.

[11] D.R. Lide: CRC Handbook of Chemistry and Physics (82 nd Edition, CRC Press, LLC, 2001/2, 4-134).

[12] D.A. Voss, E.P. Butler and T.E. Mitchell: Met. Trans A Vol. 13 (1982), p.929.

[13] A. Atkinson and R.I. Taylor: Phil. Mag. A Vol. 43 (1981), p.979.

[14] M.L. Volpe and J. Reddy: J. Chem. Phys Vol. 53 (1970), p.1117.

[15] S.D. Sharma and S.C. Kashyap: J. Appl. Phys Vol. 42 (1971), p.5302.

[16] G.M. Raynaud and R.A. Rapp: Oxid. Met Vol. 21 (1984), p.89.

[17] B.L. Yi: Fuel Cells (Chemical Industrial Press, Beijing China, 2003).

[18] D.F. Donald and A.W. Searcy: J. Phys. Chem Vol. 67 (1964), p.2335.

[19] S. Fujihara, Y. Ogawa and A. Kasai: Chem. Mat Vol. 16 (2004), p.2965.

[20] G.D. Mahan: J. Appl. Phys Vol. 54 (1983), p.3825.

[21] X. Liu, X.H. Wu, H. Cao and R.P.H. Chang: J. Appl. Phys Vol. 95 (2004), p.3141.

[22] X.L. Wu, G.G. Siu, C.L. Fu and H.C. Ong: Appl. Phys. Lett Vol. 78 (2001), p.2285.

[23] B.X. Lin, Z.X. Fu, Y.B. Jia and G.H. Liao: J. Electrochem. Soc Vol. 148 (2001), p. G110.

Fetching data from Crossref.
This may take some time to load.