Interdiffusion Behavior of Electroplated Platinum-Iridium Alloys on Nickel-Base Single Crystal Superalloy TMS-82+


Article Preview

In the present study, platinum-iridium alloys (Ir = 15.8, 27.3, 36.1, 100at.%) were electroplated on a nickel-base single crystal superalloy TMS-82+ followed by a diffusion treatment at 1373K for 1 h. Interdiffusion behavior between the Pt-Ir films and substrates was investigated in terms of chemical composition, phase constitution and morphology. X-ray analysis revealed that annealed specimens consisted of several fcc solid solutioned phases with various lattice parameters, together with ordered intermetallic compounds (L12-(Pt,Ni)3Al and B2-(Ir,Ni)Al), due to the inward diffusion of Pt and Ir from the electrodeposited films to the superalloy substrates, and the outward diffusion of solute elements (Ni, Al, Cr, Co) in the superalloy substrates into the films during annealing. The depth concentration analysis indicated that the Pt-36.1Ir film effectively retarded the outward diffusion of solute elements, especially nickel, from the substrate.



Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara




Y. N. Wu et al., "Interdiffusion Behavior of Electroplated Platinum-Iridium Alloys on Nickel-Base Single Crystal Superalloy TMS-82+", Materials Science Forum, Vols. 522-523, pp. 293-300, 2006

Online since:

August 2006




[1] G. Fisher, P.K. Datta and J.S. Burnell-Gray: Surf. Coat. Technol. Vol. 113(1999), p.259.

[2] W.T. Wu, A. rahmel and M. Schorr: Oxid. Met. Vol. 22(1984), p.59.

[3] J. Benoist, K.F. Badawi, A. Malié and C. Ramade: Surf. Coat. Technol. Vol. 182(2004), p.14.

[4] D. He, H. Guan, X. Sun and X. Jiang: Thin Solid Films Vol. 376(2000), p.144.

[5] P.C. Patnaik: Advances in High Temperature Structural Materials and Protective Coatings (NRC Canada, 1994).

[6] T.E. Strangman and P.A. Solfest: US Patent 4880614, 14 Nov (1989).

[7] H. Murakami, T. Yano and S. Sodeoka: Mater. Trans. Vol. 45 (2004), p.2886.

[8] H. Hosoda, S. Miyazaki and S. Hanada: Intermetallics Vol. 8(2000), p.1081.

[9] K.N. Lee and W.L. Worrell: Oxid. Met. Vol. 32(1989), p.357.

[10] T.C. Chou: J. Mater. Res. Vol. 5(1990), p.378.

[11] P. Kuppusami and H. Murakami: Surf. Coat. Technol. Vol. 186(2004), p.377.

[12] F. Wu, H. Murakami and H. Harada: Mater. Trans. Vol. 44(2003), p.1675.

[13] F. Wu, H. Murakami and A. Suzuki: Surf. Coat. Technol. Vol. 168(2003), p.62.

[14] Y.N. Wu, A. Suzuki, H. Murakami and S. Kuroda: submitted to Mater. Trans.

[15] F. Wu, H. Murakami, Y. Yamabe-Mitarai, H. Harada, H. Katayama and Y. Yamamoto: Surf. Coat. Technol. Vol. 184 (2004), p.24.

[16] Y.N. Wu, A. Suzuki, H. Murakami and S. Kuroda: Proc. 16 th International Corrosion Congress (Beijing, Sep. 19-25, 2005).

[17] T. B. Massalski: Binary Alloy Phase Diagrams (ASM International, 1990).

[18] J. Benoist, T. Girardeau, P. Goudeau, K.F. Badawi and Agnès Traverse: Surf. Coat. Technol. Vol. 161(2002), p.200.

[19] A. Chiba, T. Ono, X.G. Li and S. Takahashi: Intermetallics Vol. 6(1998), p.35.

[20] B. Gleeson, W. Wang, S. Hayashi and D. Sordelet: Mater. Sci. Forum Vols. 461-464(2004), p.213.

[21] M.S.A. Karunaratne and R.C. Reed: Acta Mater. Vol. 51(2003), p.2905.