Isothermal Oxidation of Pt Modified and Ru Modified Aluminide Coating on a Fourth Generation Single Crystal Superalloy


Article Preview

Isothermal oxidation behavior of a 4th generation Ni-base single crystal superalloy with Pt-modified and Ru-modified aluminide coating was examined in a temperature range 1223 to 1373 K in air. Both Pt and Ru modification improve the oxidation resistance of a simple aluminide coating, especially above 1273 K. They allow thin protective and continuous Al2O3 scales to be intact for at least 500 h at temperatures up to 1323 K. However, the Pt modification drastically accelerates the formation of a secondary reaction zone (SRZ). This suggests that Pt promotes the formation of a topologically close-packed phase by lowering the solubility of refractory elements in γ-Ni. In contrast, the Ru modification reduces the SRZ, and is expected to enhance the phase stability under the coating by preventing the depletion of Ru due to its outward diffusion.



Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara




Y. Matsuoka et al., "Isothermal Oxidation of Pt Modified and Ru Modified Aluminide Coating on a Fourth Generation Single Crystal Superalloy", Materials Science Forum, Vols. 522-523, pp. 301-308, 2006

Online since:

August 2006




[1] W. S. Walston et al.: A New Type of Microstructural Instability in Superalloys-SRZ, SUPERALLOY 1996 (1996), pp.9-18.


[2] J. C. Zhao et al.: Materials for Protection of Substrates at High Temperature, Articles Made Therefrom, and Method for Protecting Substrates, U. S. Patent 0, 148, 141 A1 (2003).

[3] H. Harada et al.: Proc. of 2 nd International Symposium on High Temperature Materials 2001, Tsukuba, Japan, (2001), pp.30-31.

[4] W. S. Walston et al.: Nickel Base Superalloy and Article, U. S. Patent 5, 482, 789 A (1996).

[5] Y. Matsuoka et al.: Proc. of 10 th International Symposium on Superalloys 2004, Sevensprings, PA, (2004), pp.637-642.

[6] E. J. Felton and F. S. Pettit: Oxid. Metal, Vol. 10 (3) (1976), pp.189-223.

[7] E.C. Dickey, B.A. Pint, K. B. Alexander, and I. G. Wright: High Temperature Surface Engineering (J. Nicholls, ed., Institute of Materials, London, 1998).

[8] F. S. Pettit: Trans. Met. Soc. AIME. Vol. 239 (1967), p.1296.

[9] M. Reid, M. J. Pomeroy and J. S. Robinson: Mater. Sci. Forum. Vol. 461 (2004), pp.343-350.

[10] Y. Matsuoka et al.: Proc. of International Symposium on Advanced Structural and Functional Materials Design, Osaka, Japan, (2004).

[11] J. H. Chen and J. A. Little: Surf. Coat. Tech. Vol. 92 (1997), pp.69-77.