Isothermal Oxidation of Pt Modified and Ru Modified Aluminide Coating on a Fourth Generation Single Crystal Superalloy

Abstract:

Article Preview

Isothermal oxidation behavior of a 4th generation Ni-base single crystal superalloy with Pt-modified and Ru-modified aluminide coating was examined in a temperature range 1223 to 1373 K in air. Both Pt and Ru modification improve the oxidation resistance of a simple aluminide coating, especially above 1273 K. They allow thin protective and continuous Al2O3 scales to be intact for at least 500 h at temperatures up to 1323 K. However, the Pt modification drastically accelerates the formation of a secondary reaction zone (SRZ). This suggests that Pt promotes the formation of a topologically close-packed phase by lowering the solubility of refractory elements in γ-Ni. In contrast, the Ru modification reduces the SRZ, and is expected to enhance the phase stability under the coating by preventing the depletion of Ru due to its outward diffusion.

Info:

Periodical:

Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara

Pages:

301-308

DOI:

10.4028/www.scientific.net/MSF.522-523.301

Citation:

Y. Matsuoka et al., "Isothermal Oxidation of Pt Modified and Ru Modified Aluminide Coating on a Fourth Generation Single Crystal Superalloy", Materials Science Forum, Vols. 522-523, pp. 301-308, 2006

Online since:

August 2006

Export:

Price:

$35.00

[1] W. S. Walston et al.: A New Type of Microstructural Instability in Superalloys-SRZ, SUPERALLOY 1996 (1996), pp.9-18.

DOI: 10.7449/1996/superalloys_1996_9_18

[2] J. C. Zhao et al.: Materials for Protection of Substrates at High Temperature, Articles Made Therefrom, and Method for Protecting Substrates, U. S. Patent 0, 148, 141 A1 (2003).

[3] H. Harada et al.: Proc. of 2 nd International Symposium on High Temperature Materials 2001, Tsukuba, Japan, (2001), pp.30-31.

[4] W. S. Walston et al.: Nickel Base Superalloy and Article, U. S. Patent 5, 482, 789 A (1996).

[5] Y. Matsuoka et al.: Proc. of 10 th International Symposium on Superalloys 2004, Sevensprings, PA, (2004), pp.637-642.

[6] E. J. Felton and F. S. Pettit: Oxid. Metal, Vol. 10 (3) (1976), pp.189-223.

[7] E.C. Dickey, B.A. Pint, K. B. Alexander, and I. G. Wright: High Temperature Surface Engineering (J. Nicholls, ed., Institute of Materials, London, 1998).

[8] F. S. Pettit: Trans. Met. Soc. AIME. Vol. 239 (1967), p.1296.

[9] M. Reid, M. J. Pomeroy and J. S. Robinson: Mater. Sci. Forum. Vol. 461 (2004), pp.343-350.

[10] Y. Matsuoka et al.: Proc. of International Symposium on Advanced Structural and Functional Materials Design, Osaka, Japan, (2004).

[11] J. H. Chen and J. A. Little: Surf. Coat. Tech. Vol. 92 (1997), pp.69-77.

In order to see related information, you need to Login.