Micro- /Nano-Crystal Aluminized ODS Coatings

Abstract:

Article Preview

A novel technique has been developed to prepare micro-/nano-crystal aluminized ODS coatings on stainless steel and nickel-base superalloy. In this technique, the pack aluminizing is combined with the repeated ball impact. Pure Al powder is mixed with 1wt% Y2O3 powder by ball milling. The ultrafine Y2O3 powder is well dispersed in Al particles. The modified Al particles are welded to the surface of metals by ball impact, causing the refinement of coarse grains and acceleration of atomic diffusion. Micro-/nano-crystal alloy layer with Y2O3 grows outward at a much low temperature (below 600°C) and in short treatment duration, compared with conventional pack aluminizing. The effects of processing temperature and duration on formation of the coatings have been analyzed. The microstructure of the coatings is studied using the methods of SEM, AMF, EDS, XRF and XRD. The results indicate that the aluminized ODS coatings appear to be dense, homogeneous, micro-/nano-crystal structure, and consist mainly of Al-rich phases, such as Fe2Al5, FeAl3 NiAl3 and7 CrAl5. High temperature oxidation tests show that the coatings enhance the oxidation resistance.

Info:

Periodical:

Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara

Pages:

323-330

DOI:

10.4028/www.scientific.net/MSF.522-523.323

Citation:

Z. L. Zhan et al., "Micro- /Nano-Crystal Aluminized ODS Coatings", Materials Science Forum, Vols. 522-523, pp. 323-330, 2006

Online since:

August 2006

Export:

Price:

$38.00

[1] H. Hindam and D.P. Whittle: Oxid. Met. Vol. 18 (1982), p.245.

[2] J. Stringer, B. A. Wilcox and R. I. Jaffee: Oxid. Met. Vol. 5 (1972), p.11.

[3] Hiroshi Nagai: Trans. Jim Vol. 24 (1983), p.839.

[4] K.L. Luthra and E.L. Hall: Oxid. Met. Vol. 26 (1986), p.385.

[5] F. Wang, H. Lou, L. Bai and W. Wu: Mater. Sci. Eng. Vol. A121(1989), p.387.

[6] Y. Longa and M. Takemoto: Oxid. Metals Vol. 41(1994), p.301.

[7] L.Y. Kuo and P. Shen; Mater. Sci. Eng. Vol. A277 (2000), p.258.

[8] K.A. Khor and Y.W. Gu: Mater. Sci. Eng. Vol. A277 (2000), p.64.

[9] M.J. Cristobal, P.N. Gibson and M.F. Stroosnijder: Corros. Sci. Vol. 38(1996), p.805.

[10] G. Dearnaley, T. Laursen and J.L. Whiteon: Mater. Sci. Eng. Vol. 90(1987), p.191.

[11] M.J. Bennett, H.E. Bishop, P.R. Chalker and A.T. Tuson: Mater. Sci. Eng. Vol. 90 (1987), p.177.

[12] C.N. Panagopoulos, P.E. Agathocleous, V.D. Papachristos and A. Michaelides, Surf. Coat. Technol. Vol. 123 (2000), p.62.

[13] Y. He, H. Qi, X. Bai, D. Wang, Z. Li, C. Xu and W. Gao: High Tem. Mater. Pro. Vol. 19(2002), p.71.

[14] R. Streiff: J. De Physique Vol. 3(1993), p.17.

[15] T. Li and X. Ma: ACTA Metallurgica Sinica(in Chinese) Vol. 27(1991), p.25.

[16] X. Lu, R. Zhu and Y. He: Oxid. Metals Vol. 43(1995), p.353.

[17] Y. He, Z. huang, H. Qi, D. Wang, Z. Li and W. Gao: Mater. Letters Vol. 45(2000), p.79.

[18] M.H. Zhen and R.A. Rapp: Oxid. Metals Vol. 49(1998), p.19.

[19] D.M. Miller, S.C. Kung, S.D. Scarberry and R.A. Rapp: Oxid. Metals Vol. 29(1988), p.239.

[20] N.V. Bangaru and R.C. Krutenat: J. Vac. Sci. Technol. Vol. B2(1984), p.806.

[21] G.W. Goward and D.H. Boone: Oxid. Metals Vol. 3(1971), p.475.

[22] S.R. Levine and R.M. Caves: Electrochem. Soc. Vol. 121(1974), p.1051.

[23] R. Bianco and R.A. Rapp: Electrochem. Soc. Vol. 140(1993), p.1181.

[24] Z. L. Zhan, Y. D. He, D. R. Wang and W. Gao: Intermetallics, Vol. 14(2006), p.75.

In order to see related information, you need to Login.