Novel Electrodeposited Ni-Based Nanocomposite Precursors for Nitriding and Low Temperature Chromizing


Article Preview

Two types of Ni-base nanocomposites were prepared by co-deposition of Ni with nano-sized particles of Cr or CeO2, respectively. Both Ni-Cr and Ni-CeO2 nanocomposites were mainly composed of nanocrystalline Ni matrix, in which certain content of nanoparticles of Cr or CeO2 randomly dispersed. The Ni-Cr nanocomposite was used as a precursor for preparing a novel hard Ni/CrN coating by plasma nitriding at 560oC. The Ni-CeO2 nanocomposite was used as a precursor to develop a novel oxidation-resistant chromia-forming coating by low temperature chromizing using a conventional pack-cementation method. The microhardness of the nitrided layer on the Ni-Cr nanocomposite and the oxidation resistance of the chromizing coating on the Ni-CeO2 nanocomposite were both greatly increased, in comparison to the corresponding counterparts, which were obtained by plasma nitriding on a conventional coarse-grained Ni-Cr alloy with similar Cr content and by chromizing on a coarse-grained Ni metal, respectively. The relationships among the microstructures of the nanocomposite precursors and the nitrided/or chromized coatings, and their properties were investigated and discussed.



Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara




X. Peng et al., "Novel Electrodeposited Ni-Based Nanocomposite Precursors for Nitriding and Low Temperature Chromizing", Materials Science Forum, Vols. 522-523, pp. 331-338, 2006

Online since:

August 2006




[1] J. Horváth, R. Birringer, H. Gleiter: Solid State Commum. Vol. 62(1987), p.319.

[2] Yu. R. Kolobov, G. P. Grabovetskaya, M. B. Ivanov, A. P. Zhilyaev, R. Z. Valiev: Scripta Mater. Vol. 44(2001), p.873.

[3] W. P. Tong, N. R. Tao, Z. B. Wang, J. Lu, K. Lu: Science Vol. 299(2003), p.686.

[4] Z. B. Wang, N. R. Tao, W. P. Tong, J. Lu, K. Lu: Acta Mater. Vol. 51(2003), p.4319.

[5] R. P. Rubly, D. L. Douglass: Oxid. Met. Vol. 35(1991), p.259.

[6] C. Leroy, T. Czerwiec, C. Gabet, T. Belmonte, H. Michel: Surf. Coat. Technol. Vol. 142(2001), p.241.

[7] P. K. Aw, A. W. Batchelor, N. L. Loh: Surf. Coat. Technol. Vol. 89(1997), p.70.

[8] T. Makishi, K. Nakata: Metall. Mater. Trans. A Vol. 35(2004), p.227.

[9] R.L. Samuel and N. A. Lockington: Met. Treat. Drop Forging, Vol. 18(1951), p.354.

[10] Z. Liu, W. Gao, K. Dahm, F. Wang. Acta Mater. Vol. 46(1998), p.1691.

[11] X. Peng, F. Wang. Corros. Sci. Vol. 45(2003), p.2293.

[12] L. Pawlowski. The science and engineering of thermal spray coatings, Wiley, England, (1995).

[13] C. H. Chou, J. Philips. J Mater. Res. Vol. 7(1992), p.2107.

[14] D. S. Lashmore, M. P. Dariel. In Encyclopedia of materials science and engineering, (R. W. Cahn, ed. ), suppl. Vol. 1, Oxford, Pergamon, 1988. p.136.

[15] G. Palumbo, S. J. Thorpe, K. T. Aust. Scr Metall. Mater. Vol. 24(1990), p.1347.

[16] Y. Zhang, X. Peng, F. Wang: Mater. Lett. Vol. 58(2004), p.1134.

[17] C. Zhang, X. Peng, J. Zhao, F. Wang: J Electrochem. Soc. Vol. 152(2005), p. B321.

[18] L. Zhu, X. Peng, J. Yan, F. Wang: Oxid. Met. Vol. 62 (2004), p.411.

[19] X. Peng, D. Ping, T. Li, W. Wu: J Electrochem. Soc. Vol. 145(1998), p.389.

[20] X. Peng, T. Li, W. Wu: Oxid. Met. Vol. 51(1999), p.291.

[21] P. Kofstad: High Temperature Corrosion, Elsevier Applied Science, London and New York, 1988, p.335.

[22] M. J. Fleetwood. J Inst. Met. Vol. 94(1966), p.218.