Strains in Thermally Growing Alumina Films Measured In-Situ Using Synchrotron X-Rays


Article Preview

Strains in thermally grown oxides have been measured in-situ, as the oxides develop and evolve. Extensive data have been acquired from oxides grown in air at elevated temperatures on different model alloys that form Al2O3. Using synchrotron x-rays at the Advanced Photon Source (Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from the oxidizing specimen were recorded every 5 minutes during oxidation and subsequent cooling. The diffraction patterns were analyzed to determine strains in the oxides, as well as phase changes and the degree of texture. To study a specimen's response to stress perturbation, the oxidizing temperature was quickly cooled from 1100 to 950oC to impose a compressive thermal stress in the scale. This paper describes this new experimental approach and gives examples from oxidized β-NiAl, Fe-20Cr-10Al, Fe-28Al-5Cr and H2- annealed Fe-28Al-5Cr (all at. %) alloys to illustrate some current understanding of the development and relaxation of growth stresses in Al2O3.



Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara




P. Y. Hou et al., "Strains in Thermally Growing Alumina Films Measured In-Situ Using Synchrotron X-Rays", Materials Science Forum, Vols. 522-523, pp. 433-440, 2006

Online since:

August 2006




[1] N. B. Pilling and R. E. Bedworth, J. Inst. Met. Vol. 29 (1923), p.529.

[2] F. N. Rhines and J. S. Wolf, Metall. Trans., Vol. 1 (1970), p.1701.

[3] See for example the review by J. Stringer, Corr. Sci., Vol. 10 (1970), p.513.

[4] D. Delaunary, A. M. Huntz and P. Lacombe, Corr. Sci., Vol. 20 (1980), p.1109.

[5] S. R. J. Saunders, H. E. Evans, M. Li, D. D. Gohil and S. Osbergy, Oxid. Met., Vol. 48 (1997), p.189.

[6] Meishuan Li, Tiefan Li, Wei Gao and Zhenyu Liu, Oxid. Met., Vol. 51 (1999), p.333.


[7] N. Eisenreich, H. Fietzek, M.J. Garcia-Vargas, M. Juez-Lorenzo and V. Kolarik, J. Corr. Sci. Eng., Vol. 6 (2003), paper H062.

[8] E. Schumann, C. Sarioglu, J. R. Blachere, F. S. Pettit and G. H. Meier, Oxid. Met., Vol. 53 (2000), p.259.

[9] P. F. Tortorelli, K. L. More, E. D. Specht, B. A. Pint and P. Zschack, Mater. High Temp., Vol. 30 (2003), p.303.

[10] H. E. Evans, Mater. Sci. Eng. A, Vol. A203 (1995), p.117.

[11] I .C. Noyen and J. B. Cohen, Residual stress measurement by diffraction and interpretation, (Springer-Verlag, New York, 1987).

[12] The Oxide Handbook, Second Edition, p.183, ed. G. V. Samsonov, IFI/Plenum, New York, (1982).

[13] J. Doychak, J. L. Smialek and T. E. Mitchell, Met. Trans. Vol 20A (1989), p.499.

[14] G. C. Rybicki and J. L. Smialek, Oxid. Metals, Vol. 31 (1989), p.275.

[15] V. K. Tolpygo and D. R. Clarke, Mater. High Temp., Vol. 17 (2000), p.59.

[16] P. Y. Hou, A. P. Paulikas and B. W. Veal, Microscopy of Oxidation, April 4-6, 2005, University of Birmingham, UK, to be published in Mater. High Temp.

[17] J. C. Yang, K. Nadarzinski, E. Schumann and M. Rühle, Scripta Met., Vol. 33 (1995), p.1043.

[18] A. Andoh, S. Taniguchi and T. Shibata, Mater. Sci. Forum, Vol. 369-372 (2001), p.303.

[19] H. El Kadiri, R. Molins and Y. Bienvenu, Mater. Sci. Forum, Vol. 461-464 (2004), p.1107.

[20] M. W. Brumm and H. J. Grabke, Corr. Sci., Vol. 33 (1992), p.1677.

[21] R. Prescott, D. F. Mitchell and M. J. Graham, Corr., Vol. 50 (1994), p.62.

[22] C. Li, A. Ohmori and R. McPherson, J. Mater. Sci., Vol. 32 (1997), p.997.

[23] M. Schutze, Proc. workshop high temperature corrosion of advanced materials and protective coatings, p.39, (Elsevier Sci. Pub. 1992).

[24] P. Y. Hou, A. P. Paulikas and B. W. Veal, Mater. Sci. Forum, Vol. 461-464 (2004), p.671.

[25] Z. G. Yang and P. Y. Hou, Mater. Sci. Eng. A, Vol. 391 (2005), p.1.

[26] D. Renusch, M. Grimsditch, I. Koshelev, B. W. Veal and P. Y. Hou, Oxid. Met., Vol. 48 (1997), p.471.


[27] X. F. Zhang, K. Thaidigsmann, J. Ager, and P. Y. Hou, Initial stage Al2O3 scale development on a Cr-containing iron aluminide, manuscript in preparation.

[28] P. Y. Hou and J. L. Smialek, Mater. High Temp., Vol. 17 (2000), p.79.

[29] E. Arzt and P. Grahle, Acta mater., Vol. 46 (1998), p.2717.

[30] M. Schutze, Mater. Sci. Tech., Vol. 6 (1990), p.32.

[31] R. M. Cannon, W. H. Rhodes and A. H. Heuer, J. Am. Cerem. Soc., Vol. 63 (1980), p.46.

[32] H-T. Lin and P. F. Becher, J. Am. Cerem. Soc., Vol. 73, (1990), p.1378.

[33] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, second edition, p.736, Wiley-Interscience, New York, (1975).