An Overview of Metal Dusting in Synthesis Gas Environments


Article Preview

This paper gives an overview of the different processes of metal dusting (MD) that operate on low and high alloyed iron and nickel base alloys exposed in CO+H2–containing environments with or without water vapour. MD of pure metals like iron and nickel occur with a solely carbon-induced corrosion mechanism. However, in high alloyed materials with strong oxide formers such as Cr and Al, a more complex MD-process takes place which involves both carbon and oxygen in close collaboration. The “alloyed” carbides, i.e normally Cr-containing carbides, formed in such materials are thermodynamically stable with respect to the carbon activity. However, in the reaction front of a MD-pit with non-protective spinel oxide, they destabilise and dissolve due to the influence of the low oxygen activity determined by CO-dissociation. Based on recent results in the field of MD a chart with tentative MD mechanisms is presented as a function of alloy composition and temperature.



Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara




P. Szakàlos "An Overview of Metal Dusting in Synthesis Gas Environments", Materials Science Forum, Vols. 522-523, pp. 571-580, 2006

Online since:

August 2006





[1] E. Camp, C. Phillips, and L. Gross: Corr., Vol. 1 (1945), p.149.

[2] F.A. Prange: Corr., Vol 15, No. 12 (1959), p. 619t.

[3] F. Eberle and R.D. Wylie: Corr., Vol 15, No 12 (1959), p. 622t.

[4] W.B. Hoyt and R.H. Caughey: Corr., Vol. 15 (1959), p.627.

[5] B. Hopkinson and H. Copson: Corr., Vol 15, No. 12 (1959), p. 608t.

[6] A. Hultgren and M. Hillert:, Jernkont. Ann. 137: 7 (1953).

[7] R.F. Hochman and J.H. Burson: Am. petroleum inst., division of refinery, Proc., Vol. 46, (1966) p.331.

[8] Z. Zeng, K. Natesan and V.A. Maroni: Oxidation of Metals, Vol. 58: 1 (2002), p.147.

[9] H.J. Grabke: Mat. and Corr., Vol. 49, (1998), p.303.

[10] E. Pippel, J. Woltersdorf, H.J. Grabke and S. Strauss: Steel Research, Vol. 66, No 7, (1995), p.217.

[11] E. Pippel, J. Woltersdorf and R. Schneider: Mat. and Corr., Vol. 49, No 5 (1998), p.309.

[12] P. Szakálos, R. Pettersson and S. Hertzman: Corr. Sci, Vol. 44, No 10 (2002), p.2253.

[13] P. Szakálos: Materials and Corrosion, Vol 54, No. 10 (2003), p.752.

[14] P. Szakálos: Mechanisms of metal dusting, (Doctoral Thesis, ISBN 91-7283-713-6, Stockholm 2004).

[15] C.M. Chun, J.D. Mumford and T.A. Ramanarayanan: J. Electrochem. Soc. 149 7 (2002), p. B348.

[16] A. Schneider: Corro Sci. Vol. 44, no. 10 (2002), p.2353.

[17] B. Schmid; J. H. Walmsley, Ø. Grong and R. Ødegård: Met. and Mat. Trans. A (USA), vol. 34A, No. 2 (2003), p. 345A.

[18] C.M. Chun, J.D. Mumford and T.A. Ramanarayanan: J. of Electrochem. Soc. Vol. 150, no. 2 (2003) p. B76.

[19] G. Hultquist, C. Anghel and P. Szakalos. ISHOC (2005).

[20] R.F. Hochman: Proceedings of the 3th Int. Congress on Met. Corr, Moscow, USSR The Netherlands, 1966, Univ. Of Moscow Press (1969), p.119.

[21] C.H. Toh, P.R. Munroe and D.J. Young: 15th Int. Corr. Conf. (ICC), Granada, Sept. (2002).

[22] B. A. Baker and G. D. Smith: Int. Workshop on Metal Dusting, ANL, Argonne, Illinois Sept. 26-28, (2001).

[23] P. Szakálos, M. Lundberg and R. Pettersson, Material Science Forum, Volumes 461-464, Part 1, pp.561-570 (2004) (6th HTCPM, Les Embiez).

[24] P. Szakálos, M. Lundberg and R. Pettersson, Corr. Sci, accepted june (2005).

[25] J. Skarda: Conf. Industrial Combustion Thechnologies, Chicago, Illinois, USA, 29-30 Apr. 1986, American Society of Metals (1986), p.279.

[26] F.K. Naumann and F. Spies: Praktische Metallogr., 14-3 (1977), p.160.

[27] P. Kofstad, High temperature corrosion (Elsevier Applied Science, London and New York, 1988).

Fetching data from Crossref.
This may take some time to load.