Dynamic Analysis of Residual Stress Introduced by Laser Peening


Article Preview

Residual stress induced by laser single pulse irradiation was analyzed using a dynamic finite element code, ABAQUS/Explicit. The effects of the magnitude and length of a surface pressure pulse having a circular top-hat shape on the final residual stress in Ti-6Al-4V were investigated. A high peak pressure and/or a long pulse duration was effective in generating large compressive residual stress deep beneath the surface. However, large tensile residual stress features occurred near the centre and edge of the laser spot on the surface for high pressure and/or long pulse durations due to a radial focusing effect. Use of shorter pulse durations avoided this. The peak pressure (3GPa) required to induce a surface compressive residual stress across the whole area of the spot was slightly higher than the threshold pressure needed to plastically deform the surface.



Materials Science Forum (Volumes 524-525)

Edited by:

W. Reimers and S. Quander




K. Akita et al., "Dynamic Analysis of Residual Stress Introduced by Laser Peening", Materials Science Forum, Vols. 524-525, pp. 135-140, 2006

Online since:

September 2006




[1] A. H. Clauer, Materials and Processing Report, 6 (1991) 3-5.

[2] P. Peyre, P. Merrien, H.P. Lieurade, R. Fabbro and A. Bignonnet, The 5th Int. Conf. on Shot Peening (ICSP5), Oxford, United Kingdom (1993) 301-310.

[3] J. J. Ruschau, R. John, S. R. Thompson and T. Nicholas, Int. J. Fatigue, 21 (1999) S199-S209.

[4] J. M. Yang, Y. C. Her, N. Han and A. H. Clauer, Mat. Sci. Eng. A, 298 (2001) 296-299.

[5] Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki and Y. Ochi, Mat. Sci. Eng. A, 417 (2006) 334-340.

[6] Y. Sano, M. Kimura, K. Sato, M. Obata, A. Sudo, Y. Hamamoto, S. Shima, Y. Ichikawa, H. Yamazaki, M. Naruse, S. Hida, T. Watanabe and Y. Oono, The 8th Int. Conf. on Nuclear Engineering (ICONE-8), Baltimore, USA (2000) ICONE-8441.

[7] D. W. See, J. L. Dulaney, A. H. Clauer and R. D. Tenaglia, Surface Engineering, 18 (2002) 32-36.

[8] A. H. Clauer, C. T. Walters and S. C. Ford, ASM Conf. on Applications of Lasers in Materials Processing, Los Angeles, California (1983) 7-22.

[9] P. Peyre, R. Fabbro, P. Merrien and H. P. Lieurade, Mat. Sci. Eng. A, 210 (1996) 102-113.

[10] A. D. Evans, A. King, T. Pirling, G. Bruno and P. J. Withers, J. Neutron Research, 11 (2003) 229-233.

[11] M. R. Hill, A. T. Dewald, J. E. Rankin and M. J. Lee, J. Neutron Research, 11 (2003) 195-200.

[12] K. Akita, H. Tanaka, Y. Sano and S. Ohya, Materials Science Forum, 490-491 (2005) 370-375.

DOI: https://doi.org/10.4028/www.scientific.net/msf.490-491.370

[13] R. Fabbro, J. Fournier, P. Ballard, D. Devaux and J. Virmont, J. Appl. Phys., 68 (1990) 775-784.

[14] L. Berthe, R. Fabbro, P. Peyre, L. Tollier and E. Bartnicki, J. Appl. Phys., 82 (1997) 2826-2832.

DOI: https://doi.org/10.1063/1.366113

[15] W. Braisted, R. Brockman, Int. J. Fatigue, 21 (1999) 719-724.

[16] K. Ding and L. Ye, Surface Engineering, 19 (2003) 351-358.

[17] K. Ding and L. Ye, Surface Engineering, 19 (2003) 127-133.

[18] P. Peyre, A. Sollier, I. Chaieb, L. Berthe, E. Bartnicki, C. Braham and R. Fabbro, Eur. Phys. J. Appl. Phys. 23 (2003) 83-88.

DOI: https://doi.org/10.1051/epjap:2003037

[19] Y. Sano, N. Mukai, M. Yoda, K. Ogawa and N. Suezono, Mat. Sci. Res. Int. STP-2 (2001) 453-458.

[20] L. Berthe, R. Fabbro, P. Peyre, L. Tollier and E. Bartnicki: Shock waves from a water-confined laser-generated plasma, S0021 - 8979, 03618- 9, American Institute of Physics, New York, USA, (1997).

DOI: https://doi.org/10.1063/1.366113

[21] D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, J. Appl. Phys. 74 (1993) 2268-2273.

[22] Y. Sano, N. Mukai, K. Okazaki and M. Obata, Nuclear Instruments and Methods in Physics Research B, 121 (1997) 432-436.

[23] H. Choea, S.M. Abkowitz, S. Abkowitz and D.C. Dunanda, Mat. Sci. Eng. A, 396 (2005) 99-106.