Strengthening of Si3N4 Ceramics by Laser Peening


Article Preview

Laser peening has been applied to silicon nitride (Si3N4) ceramics without any pre-coating. X-ray diffraction study revealed that plastic strain was introduced into the surface layer of the ceramics. Compressive residual stress was also imparted, which became larger with increasing peak power density of irradiated laser pulses. Surface roughness significantly increased due to ablative interaction of the surface with laser pulses. A Weibull plot of four-point bending test results clearly showed the increase of the bending strength and Weibull modulus by laser peening in spite of the increase of the surface roughness.



Materials Science Forum (Volumes 524-525)

Edited by:

W. Reimers and S. Quander




K. Akita et al., "Strengthening of Si3N4 Ceramics by Laser Peening", Materials Science Forum, Vols. 524-525, pp. 141-146, 2006

Online since:

September 2006




[1] Y. Sano, M. Kimura, K. Sato, M. Obata, A. Sudo, Y. Hamamoto, S. Shima, Y. Ichikawa, H. Yamazaki, M. Naruse, S. Hida, T. Watanabe and Y. Oono, The 8th Int. Conf. on Nuclear Engineering (ICONE-8), Baltimore, USA (2000) ICONE-8441.

[2] D. W. See, J. L. Dulaney, A. H. Clauer and R. D. Tenaglia, Surface Engineering, 18 (2002) 32-36.

[3] Y. Sano, N. Mukai, K. Okazaki and M. Obata, Nuclear Instruments and Methods in Physics Research B, 121 (1997) 432-436.

[4] Y. Sano, N. Mukai, M. Yoda K. Ogawa and N. Suezono Materials Science Research International, Special Technical Publication - 2 (2001) 453-458.

[5] G. Banas, F. V. Jr. Lawrence, J. M. Rigsbee and H. E. Elsayed-Ali, Journal of Applied Physics, . 67 (1990) 2380-2384.

[6] N. Mukai, N. Aoki, M. Obata, A. Ito, Y. Sano and C. Konagai The 3rd JSME/ASME Joint Int. Conf. on Nuclear Engineering (ICONE-3) Kyoto, Japan, 3 (1995) 1489-1494.

[7] Z. Hong and Y. Chengye, Materials Science and Engineering A, 257 (1998) 215-365.

[8] J. P. Chu, J. M. Rigsbee, G. Banas, F. V. Lawrence and H. E. Elsayed-Ali, Metallurgical and Materials Transactions A, 26 (1998) 1507-1517.

[9] P. Peyre, R. Fabbro, P. Merrien and H. P. Lieurade, Materials Science and Engineering A, 210 (1996) 102-113.

[10] J. J. Ruschan, R. Johnb, S. R. Thompson and T. Nicholas, International Journal of Fatigue, 21 (1999) 199-209.

[11] A. D. Evans, A. King, T. Pirling, G. Bruno and P. J. Withers, Journal of Neutron Research, 11 (2003) 229-233.

[12] K. Akita, Y. Sano, T. Kubo, Y. Yoshioka and H. Suzuki, Int. Conf. on Advanced Technology in Experimental Mechanics 2003 (ATEM'03) Nagoya, Japan (2003).

[13] K. Akita, H. Tanaka, Y. Sano and S. Ohya, The 7th International Conference on Residual stresses (ICRS-7) Xiang, China, Material Science Forum, 490-491 (2005) 370-375.


[14] The Society of Materials Science, Japan, (2005) Standard method for X-ray stress measurement (JSMS-SD-10-05).

[15] W. J. Moon, T. Ito, S. Uchimura and H. Saka, Materials Science and Engineering A, 387-389 (2004) 837-839.

[16] W. Pfeiffer and T. Frey, Materials Science Forum, 404-407 (2002) 101-108.

[17] W. Pfeiffer and T. Frey, Journal of the European Ceramic Society (2005) (in press).

[18] J. Gong and G. Zhenduo, Journal of the European Ceramic Society, 18 (1998) 891-899.

[19] K. Suzuki and K. Tanaka, The 3rd International Conference on Residual stresses (ICRS-3) Tokushima, Japan, 1 (1992) 620-633.