Development and Effects of Residual Stresses in Joints Produced by Electromagnetic Compression and its Implication on the Mechanical Properties


Article Preview

Electromagnetic compression of tubular profiles with high electrical conductivity is an innovative joining process for lightweight structures. The components are joint using pulsed magnetic fields which apply radial pressures of up to 200 MPa to tubular work pieces causing a symmetric reduction of the diameter with typical strain rates of about 104 sec-1. Since there is no contact between components to be joined and the joining machine, any damage of component’s surface can be avoided. The load, which the joint can transmit, is strongly dependent on the residual stresses in the region of the joint. In the present article, the influence of charging energy, gap width before joining and diameter on the development of the residual stresses is analysed using geometry changes during splitting of the components. Besides, the contact zone between the components is analysed and the pullout force of the joints is determined by tensile tests. This allows the evaluation of correlations between joining process, state after joining and mechanical properties.



Materials Science Forum (Volumes 524-525)

Edited by:

W. Reimers and S. Quander




P. Barreiro et al., "Development and Effects of Residual Stresses in Joints Produced by Electromagnetic Compression and its Implication on the Mechanical Properties", Materials Science Forum, Vols. 524-525, pp. 485-490, 2006

Online since:

September 2006




[1] D. Mamalis, A. Manolakos, A. Kladas, A. Koumoutsos: Electromagnetic forming and powder processing: Trends and developments. Applied Mechanics Reviews (2004) 57, pp.299-324.


[2] M. Kleiner, C. Beerwald, W. Homberg: Analysis of Process Parameters and Forming Mechanisms within the Electromagnetic Forming Process. CIRP Annals 2005, Vol. 1.


[3] W. Homberg, M. Marré, M. Kleiner: Umformtechnisches Fügen leichter Tragwerkstrukturen. Aluminium Vol. 80 (2004) 12, pp.1396-1400.

[4] F. Bach, M. Rodman, A. Rossberg, J. Weber, L. Walden: Verhalten von Aluminiumwerkstoffen bei der elektromagnetischen Blechumformung. Proc. 2. Kolloq. Elektromagnetische Umformung, 28. Mai 2003, Dortmund, S. 11-18.

[5] C. Beerwald: Grundlagen der Prozessauslegung und -gestaltung bei der elektromagnetischen Umformung. Universität Dortmund - IUL, Dr. -Ing. Diss., Reihe Umformtechnik, Shaker Verlag, Aachen 2005, ISBN 3-8322-4421-2.

[6] H. Bühler, E. Finkenstein: Hochgeschwindigkeitsumformung rohrförmige Werkstücke durch magnetische Kräfte. Bänder, Bleche und Rohre (1966) 3, pp.115-123.

[7] H. Bühler, E. Finkenstein: Ein Beitrag zur Magnetumformung rohrförmige Werkstücke. Werkstatt und Betrieb (1968) 9, pp.513-516.

[8] H. Dietz, H. Lippman, H. Schenk: Theorie des Magnetform-Verfaren: die Bewegung des Werkstückes. Elektronische Zeitschrift Ausgabe (1967), 12, pp.273-278.

[9] C. Beerwald, W. Homberg, M. Marré, V. Psyk, M. Kleiner: Einfluss der Geschwindigkeit beim kraftschlüssigen Fügen rohrförmiger Werkstücke durch elektromagnetische Kompression. Vol. 11 Paderborner Symposium Fügetechnik (2004), pp.162-172.

[10] Aluminium Alloys, ASM Metals Handbook 9th ed., vol. 9, (1985).

[11] F. Haase: Eigenspannungsermittlung an Dünnwandigen Bauteilen und Schichtverbunden. Universität Dortmund - Dr. -Ing. Diss. Shaker Verlag, Aachen 1998, ISBN 3-8265-4312-2.

[12] M. Kleiner, D. Löhe, M. Marré, Ch. Beerwald, P. Barreiro, V. Schulze, W. Homberg: Investigation of force-fit joints produced by electromagnetic tube compression. Accepted by WGP-Annals.

[13] V. Schulze, P. Barreiro, D. Löhe: Investigation of the Influence of Process Parameters on the Structure and the Mechanical Properties of Joints Produced by Electromagnetic Compression. Accepted by Advanced Materials Research.