Effect of Laser Assistance Machining on Residual Stress and Fatigue Strength for a Bearing Steel (100Cr6) and a Titanium Alloy (Ti 6Al 4V)


Article Preview

The use of Laser Assisted Machining (LAM) can improve different aspects of the machinability of high strength materials. A study was undertaken to determine the optimum cutting parameters and to quantify their influence on fatigue strength according to the type of microstructure created. Two different materials were studied: a bearing steel (100Cr6 / AISI 52100) and an aeronautical titanium alloy (Ti6Al4V). In the bearing steel a significant increase of the fatigue resistance was observed due to the transformation of the surface layer into martensite. For the titanium alloy, a slight reduction in the fatigue strength was found as in this case the microstructure and residual stress state of the surface layer was less beneficial. The surface roughness has also been measured and no significant variation has been observed for different laser powers in each material.



Materials Science Forum (Volumes 524-525)

Edited by:

W. Reimers and S. Quander




G. Germain et al., "Effect of Laser Assistance Machining on Residual Stress and Fatigue Strength for a Bearing Steel (100Cr6) and a Titanium Alloy (Ti 6Al 4V)", Materials Science Forum, Vols. 524-525, pp. 569-574, 2006

Online since:

September 2006




[1] Anderson, Patwa, Shin, Laser-assisted machining of Inconel 718 with an economic analysis, International Journal of Machine Tools and Manufacture, In Press, Corrected Proof, Available online 18 January (2006).

DOI: 10.1016/j.ijmachtools.2005.11.005

[2] Ezugwu, Bonney, Yamane, An overview of the machinability of aeroengine alloys, Journal of Materials Processing Technology, Volume 134, Issue 2, 10 March 2003, pp.233-25.

DOI: 10.1016/s0924-0136(02)01042-7

[3] Germain, Lebrun, Robert, Dal Santo, Poitou, Experimental and numerical approaches of Laser assisted turning, IJFP Vol. 8 Special Issue 2005, (2005) pp.347-361.

[4] Hauk, Structural and residual stress analysis by non-destructive methods, Elsevier, (1997).

[5] Lesourd, Etude et modélisation des mécanismes de formation de bandes de cisaillement intense en coupe des métaux. Application au tournage assisté laser de l'alliage de titane TA6V, Thèse Ecole doctorale de Nantes ED 82-174 (1996).

DOI: 10.1051/mattech/197563050203

[6] Malot, Usinage assisté par laser du bore, Thèse Université de Bourgogne TDIJON 2001/31 (2001).

[7] Melhaoui, Contribution à l'étude de l'usure d'outil de coupe en usinage assisté par laser et à l'usinabilité d'une céramique à base d'oxyde de zinc, Thèse Centrale Paris 1997-04 (1997).

[8] Rebro, Shin, Incropera, Design of operating conditions for crackfree laser-assisted machining of mullite, International Journal of Machine Tools and Manufacture, Volume 44, Issues 7-8, June 2004, pp.677-694.

DOI: 10.1016/j.ijmachtools.2004.02.011

[9] Skvarenina, Shin, Laser-assisted machining of compacted graphite iron, International Journal of Machine Tools and Manufacture, Volume 46, Issue 1, January 2006, pp.7-17.

DOI: 10.1016/j.ijmachtools.2005.04.013

[10] Wang, Yang, Wang, An investigation of laser-assisted machining of Al2O3 particule reinforced aluminium matrix composite, Materials Processing Technologie 129 (2002) pp.268-272.

DOI: 10.1016/s0924-0136(02)00616-7

Fetching data from Crossref.
This may take some time to load.