In Situ Neutron Diffraction Study on the Mechanical Behavior of an Ultra-Fine-Grained Steel


Article Preview

The martensitic phase transformation in an ultra fine grained (UFG) TRIP (transformation induced plasticity) steel with combination of high strength and high elongation was investigated during room temperature tensile test using in situ neutron diffraction. Two types of specimens, namely coarse grained (grain size of about 50 μm) and ultra-fine-grained (grain size of about 350 nm) specimens were examined. The lattice strain evolution of the austenite and martensite phases was observed and the load partitioning between the phases was identified.



Materials Science Forum (Volumes 524-525)

Edited by:

W. Reimers and S. Quander




K. X. Tao et al., "In Situ Neutron Diffraction Study on the Mechanical Behavior of an Ultra-Fine-Grained Steel", Materials Science Forum, Vols. 524-525, pp. 639-644, 2006

Online since:

September 2006




[1] R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci. Vol. 45 (2000), p.103.

[2] Y.T. Zhu, H.G. Jiang, J.Y. Huang, and T.C. Lowe, Metall. Mater. Trans. Vol. 32A (2001), p.1559.

[3] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong. Scrip. Mater. Vol. 39 (1998), p.1221.

[4] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai. Acta Mater Vol. 47 (1999), p.579.

[5] E.W. Hart, Acta Met. Vol. 15 (1967), p.351.

[6] Y.M. Wang, and E. Ma, Mater. Sci. Eng. A Vol. 375 (2004), p.46.

[7] F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter, Inter. Jour. Plast. Vol. 16(7-8) (2000), p.723.

[8] Y.Q. Ma, J.E. Jin, and Y.K. Lee, Scrip. Mater. Vol. 52 (2005), p.1311.

[9] Y.Q. Ma, J.E. Jin, and Y.K. Lee, Mater. Sci. For. Vol. 475 (2005), p.43.

[10] M.A.M. Bourke, D.C. Dunand, and E. Ustundag, Appl. Phys. A: Mater. Sci. Process. Vol. 74 (2002), p.1707.

[11] B. Clausen, T. Lorentzen, M. A. M. Bourke, and M. R. Daymond, Mater. Sci. Eng. A, Vol. 259 (1999), p.17.

[12] D. H. Carter and M. A. M. Bourke, Acta Mater, Vol. 48 (2000), p.2885.

[13] A.C. Larson and R.B. Von Dreele, GSAS-General Structure Analysis System, Report No. LAUR86-748, (1994).

[14] K. Spencer, J.D. Embury, K.T. Conlon, M. Veron, and Y. Brechet, Mater. Sci. Eng. A Vol. 387 (2004), p.873.

[15] E.C. Oliver, P.J. Withers, M.R. Daymond, S. Ueta, and T. Mori, Appl. Phys. A 74 (2002), p.1143.