Intergranular Strain and Phase Transformation in a Cobalt-Based Superalloy

Abstract:

Article Preview

ULTIMET® alloy, a cobalt-based superalloy with good corrosion and wear resistant properties, exhibits a deformation-induced phase transformation from the face-centered-cubic (FCC) phase to the hexagonal-close-packed (HCP) phase. The HCP phase formation during monotonic tensile loading was investigated using in-situ neutron diffraction. The HCP phase is first observed at a stress level of 810 MPa, which is well beyond macroscopic yielding. Strain analysis is performed on the FCC phase diffraction data in order to relate the lattice-strain development with the evolution of the new HCP phase. A method of calculating the effective macroscopic stress associated with the measured lattice strains is presented here. The effective stress can then be compared to the applied macroscopic stress in order to draw conclusions about the load-partitioning behavior of the material as a new phase develops.

Info:

Periodical:

Materials Science Forum (Volumes 524-525)

Edited by:

W. Reimers and S. Quander

Pages:

893-898

DOI:

10.4028/www.scientific.net/MSF.524-525.893

Citation:

M. L. Benson et al., "Intergranular Strain and Phase Transformation in a Cobalt-Based Superalloy", Materials Science Forum, Vols. 524-525, pp. 893-898, 2006

Online since:

September 2006

Export:

Price:

$35.00

[1] L. Jiang, C. R. Brooks, P. K. Liaw, J. Dunlap, C. J. Rawn, R. A. Peascoe, D. L. Klarstrom, Metallugical and Materials Transactions A 35 (2004) 785-796.

[2] L. Jiang, C. R. Brooks, P. K. Liaw, D. L. Klarstrom, C. J. Rawn, B. Muenchen, Materials Science and Engineering A 316 (2001) 66-79.

[3] L. Jiang, C. R. Brooks, P. K. Liaw, H. wang, C. J. Rawn, D. L. Klarstrom, Materials Science and Engineering A 314 (2001) 162-175.

[4] L. Jiang, H. Wang, P. K. Liaw, C. R. Brooks, D. L. Klarstrom, Mechanics of Materials 36 (2004) 73-84.

[5] L. Jiang, H. Wang, P. K. Liaw, C. R. Brooks, D. L. Klarstrom, Metallurgical and Materials Transactions 32 (2001) 2279-2296.

[6] M. L. Benson, T. A. Saleh, P. K. Liaw, H. Choo, D. W. Brown, M. R. Daymond, X. -L. Wang, A. D. Stoica, R. A. Buchanan, D. L. Klarstrom, Powder Diffraction 20 (2005) 121-124.

DOI: 10.1154/1.1913710

[7] www. haynesintl. com.

[8] M. A. M. Bourke, D. C. Dunand, E. Ustandag, Applied Physics A 75 (2002) S1707.

[9] A. C. Larson, R. B. V. Dreele, Los Alamos National Laboratory Report LAUR 86-748 (2004).

[10] R. D. Wit, Journal of Applied Crystallography 30 (1997) 510-511.

[11] T. Gnaupel-Herold, P. C. Brand, H. J. Prask, Journal of Applied Crystallography 31 (1998) 929-935.

[12] M. R. Daymond, M. A. M. Bourke, R. B. V. Dreele, B. Clausen, T. Lorentzen, Journal of Applied Physics 82 (1997) 1554-1562.

[13] N. C. Popa, D. Balzar, Journal of Applied Crystallography 34 (2001) 187-195.

[14] H. J. Bunge, Texture Analysis in Material Science, London Butterworth (1982).

[15] M. R. Daymond, Journal of Applied Physics 96 (2004) 4263-4272.

In order to see related information, you need to Login.