Evolution of Microstrains at Cyclic Incremental Deformation of Steel 42CrMo4


Article Preview

X-ray diffraction line profiles of a ferritic-pearlitic steel at different stages of monotonic and cyclic incremental strain paths were recorded and peak broadening was regarded. Evaluation of integral peak widths shows, that the distortion of structure is strongly dependent on the deformation path. The results for peak broadening at different deformation states correlate with flow stress behaviour and can be explained with certain dislocation arrangements.



Materials Science Forum (Volumes 524-525)

Edited by:

W. Reimers and S. Quander




L. W. Meyer et al., "Evolution of Microstrains at Cyclic Incremental Deformation of Steel 42CrMo4", Materials Science Forum, Vols. 524-525, pp. 925-930, 2006

Online since:

September 2006




[1] V. Hauk: Structural and Residual Stress Analysis by Nondestructive Methods. Elsevier Science B.V., (1997).

[2] H. Mughrabi: Dislocation cell and wall structures and long-range internal stresses in deformed metal crystals. Acta Metallurgica 31, (1983), pp.1367-1379.

DOI: https://doi.org/10.1016/0001-6160(83)90007-x

[3] A. Yu. Vinogradov, V.V. Stolyarov, S. Hashimoto and R.Z. Valiev: Cyclic behaviour of ultrafinegrained titanium produced by severe plastic deformation. Mat. Sc. and Eng. A318 (2001) pp.163-173.

DOI: https://doi.org/10.1016/s0921-5093(01)01262-x

[4] M. Richert, H.P. Stüwe, M.J. Zehetbauer, J. Richert, R. Pippan, Ch. Motz and E. Schafler: Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression. Mat. Sc. and Eng. A355 (2003) pp.180-185.

DOI: https://doi.org/10.1016/s0921-5093(03)00046-7

[5] V: Kafka and D. Vokoun: On backstress, overstress, and internal stresses represented on the mesoscale. Int. J. Plast. 21 (2005), pp.1461-1480.

[6] I.V. Alexandrov and N.A. Enikeev: X-ray analysis and computer simulation for grain size determination in nanostructured materials. Mat. Sc. and Eng. A286 (2000) pp.110-114.

DOI: https://doi.org/10.1016/s0921-5093(00)00652-3

[7] A. Belyakov, T. Sakai, H. Miura and R. Kaibyshev: Substructure and internal stresses developed under warm severe deformation of austenitic stainless steel. Scripta mater. 42 (2000) pp.329-325.

DOI: https://doi.org/10.1016/s1359-6462(99)00353-x

[8] L. Langlois and M. Berveiller: Overall softening and anisotropy related with the formation and evolution of dislocation cell structures. Int. J. Plast. 19 (2003), pp.599-624.

DOI: https://doi.org/10.1016/s0749-6419(01)00074-2

[9] T. Ungár and M. Zehetbauer: Stage IV work hardening in cell forming materials, part II: a new mechanism. Scripta Mater. 35 (1996), pp.1467-1473.

DOI: https://doi.org/10.1016/s1359-6462(96)00320-x

[10] L. W. Meyer, C. Gahlert, F. Hahn: Influence of an Incremental Deformation on Material Behaviour and Forming Limit of Aluminium Al99, 5 and QT-Steel 42CrMo4. Advanced Materials Research Vols. 6-8 (2005), pp.417-424.

DOI: https://doi.org/10.4028/0-87849-972-5.417

[11] Y. H. Kim and J. J. Park: Effect of process parameters on formability in incremental forming of sheet metal. Journal of Materials Processing Technology Vols. 130-131 (2002), pp.42-46.

DOI: https://doi.org/10.1016/s0924-0136(02)00788-4

[12] R. Kunc and I. Prebil: Mater. Low-cycle fatique properties of steel 42CrMo4. Sci. Eng. A345 (2003), pp.278-285.

[13] T. Ungár, J. Gubicza, P. Hanák and I. Alexandrov: Densities and character of dislocations and sizedistribution of subgrains in deformed metals by X-ray diffraction profile analysis. Mat. Sc. and Eng. A319-321 (2001) pp.274-278.

DOI: https://doi.org/10.1016/s0921-5093(01)01025-5

[14] T. Ungár, I. Dragomir, Á. Révész ans A. Borbély: The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J. Appl. Cryst. 32 (1999), pp.992-1002.

DOI: https://doi.org/10.1107/s0021889899009334

Fetching data from Crossref.
This may take some time to load.