A New Method for Determining the Chip Geometry in Milling


Article Preview

Frequently, to validate FEM simulations of the cutting process it is compared the predicted results with the experimental cutting forces. In addition, other parameters are measured and it is possible to predict the chip geometry in some particular conditions. This paper presents a new development of the photogrammetry and its applications in the study of the chip geometry. In the orthogonal milling case, it is possible to obtain a 3D model of the deformed chip employing photogrammetry digitization techniques.



Edited by:

M. Marcos and L. Sevilla




M. San Juan et al., "A New Method for Determining the Chip Geometry in Milling", Materials Science Forum, Vol. 526, pp. 7-12, 2006

Online since:

October 2006




[1] H. Ernst and M.E. Merchant, Chip Formation, Friction and High Quality Machined Surfaces, Trans. Am. Soc. Met. Vol. 29, pp.299-378 (1941).

[2] P. Arrazola: Modélisation numérique de la coupe: étude de sensibilité des paramètres d'entrée et identification du frottement entre outil-copeau. Ph.D. Thesis. E.C. Nantes. France. (2003).

[3] M. San Juan, P. Arrazola, R. Mostaza and J. Montoya: Le contact outil-copeau dans le cas du fraisage orthogonal. 17eme Congrès Française de Mécanique. Troyes. (2005).

[4] R. Wertheim, and T. Viñas: Development and application of new geometries for high peformance in milling. Int. Seminar on Improving Machine Tool Performance. CIRP. (1998) pp.249-260.

[5] K.D. Bouzakis, P. Aichouch, and K. Efstathiou: Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. Int. Journal of Machine Tools & Manufacture. Vol. 43. (2003) pp.499-514.

DOI: https://doi.org/10.1016/s0890-6955(02)00265-1

[6] W.A. Kline and R.E. De Vor: The effect of runout on cutting geometry and forces in end milling. Int. Journal of Machine Tools Design and Research. Vol. 23. Nº 2/3 (1983) pp.123-140.

[7] H.J. Fu, R.E. De Vor and S.G. Kapoor: A mechanistic model for the prediction of the force system in face milling operations. Journal of Engineering for Industry. Vol. 106 (1984) pp.81-88.

DOI: https://doi.org/10.1115/1.3185915

[8] L. Zheng, and Liang, S.Y.: Identification of cutter axis tilt in end milling. Journal of Manufacturing Science and Engineering. Vol. 119 (1997) pp.178-185.

DOI: https://doi.org/10.1115/1.2831093

[9] S.A. Spiewak: Analytical modelling of cutting point trajectories in milling. Journal of Engineering for Industry. Vol. 116 (1994) pp.440-448.

DOI: https://doi.org/10.1115/1.2902126

[10] W. Zhizhuo, On the renaming of the discipline photogrammetry, ISPRS Journal of Photogrammetry & Remote Sensing 51 (1996) pp.1-4.

DOI: https://doi.org/10.1016/0924-2716(96)00002-0

[11] K.B. Atkinson: Close Range Photogrammetry and Machine Vision. Whittles Publishing, Scotland (1996).

[12] K. Hanke: Accuracy Study Project of Eos Systems´Photomodeler. InSpec Engineering Services, (2000).

[13] M. Fedak: 3D Measurement Accuracy of a Consumer-Grade Digital Camera and RetroReflective Survey Targets. InSpec Engineering Services (2000).

[14] R.S. Pappa, L.R. Giersch, and J.M. Quagliaroli: Photogrammetry of a 5m Inflatable Space Antenna With Consummers Digital Cameras. NASA Langley Research Center (2000).

DOI: https://doi.org/10.1111/j.1747-1567.2001.tb00028.x

[15] G. Sansoni and F. Docchio: Three-dimensional optical measurements and reverse engineering for automotive applications. Robotics and Computer-Integrated Manufacturing 20 (2004). pp.359-367.

DOI: https://doi.org/10.1016/j.rcim.2004.03.001

Fetching data from Crossref.
This may take some time to load.