Electrical Properties of the La2O3/4H-SiC Interface Prepared by Atomic Layer Deposition Using La(iPrCp)3 and H2O

Abstract:

Article Preview

The La2O3 and Al2O3/La2O3 layers were grown on 4H-SiC by atomic layer deposition (ALD) method. The electrical properties of La2O3 on 4H-SiC were examined using metal-insulator-semiconductor (MIS) structures of Pt/La2O3(18nm)/4H-SiC and Pt/Al2O3(10nm)/La2O3(5nm)/4H-SiC. For the Pt/La2O3(18nm)/4H-SiC structure, even though the leakage current density was slightly reduced after the rapid thermal annealing at 500 oC, accumulation capacitance was gradually increased with increasing bias voltage due to a high leakage current. On the other hand, since the leakage current in the accumulation regime was decreased for the Pt/Al2O3/La2O3/4H-SiC MIS structure owing to the capped Al2O3 layer, the capacitance was saturated. But the saturation capacitance was strongly dependent on frequency, indicating a leaky interfacial layer formed between the La2O3 and SiC during the fabrication process of Pt/Al2O3(10nm)/ La2O3(5nm)/ 4H-SiC structure.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

1083-1086

DOI:

10.4028/www.scientific.net/MSF.527-529.1083

Citation:

J. H. Moon et al., "Electrical Properties of the La2O3/4H-SiC Interface Prepared by Atomic Layer Deposition Using La(iPrCp)3 and H2O", Materials Science Forum, Vols. 527-529, pp. 1083-1086, 2006

Online since:

October 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.