Recent Progress of SiC Hot-Wall Epitaxy and Its Modeling

Abstract:

Article Preview

From the engineering point of view, SiC hot-wall epitaxy is a very important process in SiC semiconductor processes. There are lots of experimental reports on SiC hot-wall epitaxy. They discussed the growth rate, surface morphology, doping concentration, etc. Recently, the effect of face polarity is also made clear. However, each report mentioned the particular results that strongly depend on the experimental conditions and reactor design. In addition, the discussion with inlet condition such as source gas C/Si ratio, not the depositing surface condition, leads to the confusion. In order to understand and try to design and optimize the hot-wall CVD reactor, a numerical approach is attempted. The authors have tried to make it clear that depositing surface condition might be a universal parameter of SiC CVD, and the numerical simulation could predict the growth rate, surface morphology and doping concentration by taking account of the depositing surface condition. In this study, at first, the recent progress of SiC hot-wall epitaxy in experiment is summarized. Then, the present status of its numerical modeling is explained.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

129-134

Citation:

S. I. Nishizawa and M. Pons, "Recent Progress of SiC Hot-Wall Epitaxy and Its Modeling", Materials Science Forum, Vols. 527-529, pp. 129-134, 2006

Online since:

October 2006

Export:

Price:

$38.00

[1] E. Janzén, J.P. Bergman, Ö. Daniellson, U. Forsberg, C. Hallin, J. ul Hassan, A. Henry, I.G. Ivanov, A. Kakanakova-Georgieva, P. Persson and Q. ul Wahab: Mater. Sci. Forum Vols. 483-484 (2005), p.61.

DOI: https://doi.org/10.4028/www.scientific.net/msf.483-485.61

[2] A.A. Burk, M.J. O'Loughlin, M.J. Paisley, A.R. Powell, M.F. Brady, R.T. Leonard, St.G. Müller and S.T. Allen: Mater. Sci. Forum Vols. 483-485 (2005), p.137.

[3] See in A. Schöner: in Silicon Carbide ed. by W.J. Choyke, H. Matsunami and G. Pensl, Springer (2003), p.229.

[4] Y. Ishida, T. Takahashi, H. Okumura, K. Arai and S. Yoshida: Jpn. J. Appl. Phys. Vol. 43 (2004), p.5140.

[5] A. Ellison, J. Zhang, A. Henry and E. Janzén: J. Crystal Growth Vol. 236 (2002), p.225.

[6] T. Kimoto, S. Tamura, Y. Chen, K. Fujiwara and H. Matsunami: Jpn. J. Appl. Phys. Vol. 40(2001), p. L374.

[7] J. Zhang, J. Mozzola, C. Hoff, Y. Koshka and J. Casady: Mater. Sci. Forum Vols. 483-485 (2005), p.77.

[8] H. Tsuchida, I. Kamata, T. Jikimot and K. Izumi: J. Crystal Growth Vol. 237-239 (2002), p.1206.

[9] Y. Ishida, T. Takahashi, K. Kojima, H. Okumura, K. Arai and S. Yoshida: Mater. Sci. Forum Vols. 457-460 (2004), p.213.

[10] R. Myers, O. Kordina, Y. Shishkin, S. Rao, R. Everly and S.E. Saddow: Mater. Sci. Forum Vols. 483-485 (2005), p.73.

[11] D. Crippa, G.L. Valente, A. Ruggiero, L. Neri, R. Reitano, L. Calcagno, G. Foti, M. Mauceri, S. Leone, G. Pistone, G. Abbondanza, G. Abbagnale, A. Veneroni, F. Omarini, L. Zamolo, M. Masi, F. Roccaforte, F. Gizannazzo, S. Di Franco and F. La Via: Mater. Sci. Forum Vols. 483-485 (2005).

DOI: https://doi.org/10.4028/www.scientific.net/msf.483-485.67

[12] I. Kamata, H. Tsuchida, T. Jikimoto and K. Izumi: Jpn. J. Appl. Phys. Vol. 39 (2000), p.6496.

[13] T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki and K. Arai: J. Crystal Growth Vol. 271 (2004), p.1.

[14] S. Izumi, H. Tsuchida, I. Kamata and T. Tawara: Appl. Phys. Lett. Vol. 86 (2005), p.202108.

[15] J.J. Sumakeris, J.R. Jenny and A.R. Powell: MRS Bulletin Vol. 30 (2005), p.280.

[16] D.J. Larkin, P.G. Neudeck, J.A. Powell and L.G. Matus: Appl. Phys. Lett. Vol. 65 (1994), p.1659.

[17] T. Kimoto, A. Itoh and H. Matsunami: Appl. Phys. Lett. Vol. 67 (1995), p.2385.

[18] K. Kojima, T. Suzuki, S. Kuroda, J. Nishio and K. Arai: Jpn. J. Appl. Phys. Vol. 42 (2003), p. L637.

[19] T. Kimoto, H. Nishino, W.S. Yoo and H. Matsunami: J. Appl. Phys. Vol. 73 (1993), p.726.

[20] T. Kimoto, T. Yamamoto, Z.Y. Chen, and H. Yano: J. Appl. Phys. Vol. 89 (2001), p.6105.

[21] T. Kimoto, T. Hirao, S. Nakazawa, H. Shiomi and H. Matsunami: J. Crystal Growth Vol. 249 (2003), p.208.

[22] S. Nakamura, T. Kimoto and H. Matsunami: J. Crystal Growth Vol. 256 (2003), p.341.

[23] K. Kojima, H. Okumura, S. Kuroda and K. Arai: J. Crystal Growth Vol. 269 (2004), p.367.

[24] H. Tsuchida, I. Kamata, T. Miyanagi, T. Nakamura, K. Nakayama, R. Ishii and Y. Sugawara: Jpn. J. Appl. Phys. Vol. 44 (2005), p. L806.

[25] B. Thomas and C. Hecht: Mater. Sci. Forum Vols. 483-485 (2005), p.141.

[26] A. Veneroni, F. Omarini, M. Masi, S. Leone, M. Mauceri, G. Pistone and G. Abbondanza: Mater. Sci. Forum Vols. 483-485 (2005), p.57.

DOI: https://doi.org/10.4028/www.scientific.net/msf.483-485.57

[27] P.M. Löfgren, W. Ji, C. Hallin and C.Y. Gu: J. Electrochem. Soc. Vol. 147 (2000), p.164.

[28] Ö. Danielsson, A. Henry, and E. Janzén: J. Crystal Growth Vol. 243 (2002), p.170.

[29] Ö. Danielsson, U. Forsberg and E. Janzén: J. Crystal Growth Vol. 250 (2003), p.471.

[30] U. Forsberg, Ö. Danielsson, A. Henry, M.K. Linnarsson and E. Janzén: J. Crystal Growth Vol. 253 (2003), p.340.

[31] J. Meziere, M. Ucar, E. Blanquet, M. Pons, P. Ferret and L. Di Cioccio: J. Crystal Growth Vol. 267 (2004), p.436.

[32] J. Zhang, A. Ellison, Ö. Danielsson, M.K. Linnarsson, A. Henry and E. Janzén: J. Crystal Growth Vol. 241 (2002), p.421.

[33] M. Hasegawa, A. Miyauchi, K. Masahara, Y. Ishida, T. Takahashi, T. Ohno, J. Nishio, T. Suzuki, T. Tanaka, S. Yoshida and K. Arai: Mater. Sci. Forum Vols. 389-393 (2002), p.227.

DOI: https://doi.org/10.4028/www.scientific.net/msf.389-393.227

[34] S. Nishizawa, K. Kojima, S. Kuroda, K. Arai and M. Pons: J. Crystal Growth, Vol. 275 (2005), p. e515.

[35] S. Nishizawa and M. Pons: Mater. Sci. Forum Vols. 483-485 (2005), p.53.

[36] http: /www. cfdrc. com.