Role of Oxygen in Growth of Carbon Nanotubes on SiC

Abstract:

Article Preview

Carbon nanotubes (CNTs) grown on SiC are metal-free, well-aligned, and with low structural defects. In this study, CNT formation on SiC is examined in high vacuum (10-5torr) and ultra-high vacuum (10-8torr). Multi-wall carbon nanotubes and graphitic structures are the main products on the SiC surface at 1400-1800°C in 10-5torr. Under ultra-high vacuum, the decomposition rate of SiC is much lower than in high vacuum, indicating that SiC is decomposed by oxidation reaction. Using X-ray photoelectron spectroscopy (XPS), the intensity of the O1s peak at 530.3 eV decreases with increasing take-off angle, indicating that this oxygen species exists on the walls of CNTs. The results show that oxygen with a low pressure not only oxidizes SiC, but also forms a highly thermally stable carbon-oxygen compound, and interacts with the CNTs at high temperatures.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

1575-1578

DOI:

10.4028/www.scientific.net/MSF.527-529.1575

Citation:

W. J. Lu et al., "Role of Oxygen in Growth of Carbon Nanotubes on SiC", Materials Science Forum, Vols. 527-529, pp. 1575-1578, 2006

Online since:

October 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.