Role of Oxygen in Growth of Carbon Nanotubes on SiC

Abstract:

Article Preview

Carbon nanotubes (CNTs) grown on SiC are metal-free, well-aligned, and with low structural defects. In this study, CNT formation on SiC is examined in high vacuum (10-5torr) and ultra-high vacuum (10-8torr). Multi-wall carbon nanotubes and graphitic structures are the main products on the SiC surface at 1400-1800°C in 10-5torr. Under ultra-high vacuum, the decomposition rate of SiC is much lower than in high vacuum, indicating that SiC is decomposed by oxidation reaction. Using X-ray photoelectron spectroscopy (XPS), the intensity of the O1s peak at 530.3 eV decreases with increasing take-off angle, indicating that this oxygen species exists on the walls of CNTs. The results show that oxygen with a low pressure not only oxidizes SiC, but also forms a highly thermally stable carbon-oxygen compound, and interacts with the CNTs at high temperatures.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

1575-1578

Citation:

W. J. Lu et al., "Role of Oxygen in Growth of Carbon Nanotubes on SiC", Materials Science Forum, Vols. 527-529, pp. 1575-1578, 2006

Online since:

October 2006

Export:

Price:

$38.00

[1] M. Kusunoki, T. Suzuki, T. Hirayama, and N. Shibata: Appl. Phys. Lett. 77 (2000), p.531.

[2] M. Kusunoki, T. Suzuki, T. Hirayama, and N. Shibata: Physica B 323 (2002), p.296.

[3] T. Nagano, Y. Ishikawa, and N. Shibata: Jpn. J. Appl. Phys. 42 (2003), p.1380.

[4] T. Nagano, Y. Ishikawa, and N. Shibata: Jpn. J. Appl. Phys. 42 (2003), p.1717.

[5] W. C. Mitchel, J. Boeckl, D. Tomlin, W. Lu, and J. Reynolds: Proceedings of the SPIE, Vol. 5732 (2005), p.77.

[6] H. Watanabe, Y. Hisada, S. Mukainakano, and N. Tanaka: J. of Microscopy 203 (2001), p.40.

[7] V. Derycke, R. Martel, M. Radosavljevic, F. M. Ross, and Ph. Avouris: Nano Letters 2 (2002), p.1043.

[8] S. Botti, L. S. Asilyan, R. Ciardi, F. Fabbri, S. Loreti, A. Santoni, and S. Orlanducci: Chem. Phys. Lett. 396 (2004), p.1.

[9] Y. Song and F. W. Smith: Appl. Phys. Lett. 81 (2002), p.3061.

[10] J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, and I. T. Ferguson: Phys. Rev. B 59 (1999), p.7282.

[11] A. C. Ferrari and J. Robertson: Phys. Rev. B 61 (2000), p.14095.

[12] W. Lu, W. C. Mitchel, C. A. Thornton, G. R. Landis, and W. E. Collins: J. Electro. Mater. 32 (2003), p.426.

[13] T. Noda and M. Inagaki: Carbon 2 (1964), p.127.

[14] Handbook of X-ray Photoelectron Spectroscopy, C. D. Wagner et al., G. E. Mullenbery, (Ed. ), Perkin-Elmer Co., Eden Prairie, MN (1979).

[15] A. Refke, V. Philipps, E. Vietzke, M. Erdweg, and J. von Seggern: J. Nuclear Materials 212215 (1994), p.1255.

DOI: https://doi.org/10.1016/0022-3115(94)91031-6

[16] P. L. Walker, Jr., R. L. Taylor, and J. M. Ranish: Carbon 29 (1991), p.411.

Fetching data from Crossref.
This may take some time to load.