Halide-CVD Growth of Bulk SiC Crystals


Article Preview

A novel approach to the high growth rate Chemical Vapor Deposition of SiC is described. The Halide Chemical Vapor Deposition (HCVD) method uses SiCl4, C3H8 (or CH4), and hydrogen as reactants. The use of halogenated Si source and of separate injection of Si and C precursors allows for preheating of source gases without causing premature chemical reactions. The stoichiometry of HCVD crystals can be controlled by changing the C/Si flow ratio and can be kept constant throughout growth, in contrast to the Physical Vapor Transport technique. HCVD was demonstrated to deposit high crystalline quality, very high purity 4H- and 6H-SiC crystals with growth rates comparable to other bulk SiC growth techniques. The densities of deep electron and hole traps are determined by growth temperature and C/Si ratio and can be as low as that found in standard silane-based CVD epitaxy. At high C/Si flow ratio, the resistivity of HCVD crystals exceeds 105 _cm. These characteristics make HCVD an attractive method to grow SiC for applications in high-frequency and/or high voltage devices.



Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow




A.Y. Polyakov et al., "Halide-CVD Growth of Bulk SiC Crystals", Materials Science Forum, Vols. 527-529, pp. 21-26, 2006

Online since:

October 2006




[1] Y.M. Tairov and V.F. Tsvetkov: J. Cryst. Growth Vol. 43 (1978), p.209.

[2] O. Kordina, C. Hallin, A. Ellison, A.S. Bakin, I.G. Ivanov, A. Henry, R. Yakimova, M. Touminen, A. Vehanen and E. Janz÷n: Appl. Phys. Lett. Vol. 69 (1996), p.1456.

DOI: https://doi.org/10.1063/1.117613

[3] St.G. Müller, M.F. Brady, W.H. Brixius, R.C. Glass, H. McD. Hobgood, J.R. Jenny, R.T. Leonard, D.P. Malta, A.R. Powell, V.F. Tsvetkov, S.T. Allen, J.W. Palmour and C.H. Carter: Mat. Sci. Forum Vols. 433- 436 (2003), p.39.

DOI: https://doi.org/10.4028/www.scientific.net/msf.433-436.39

[4] A. Ellison, B. Magnusson, N.T. Son, L. Storasta and E. Janz÷n: Mat. Sci. Forum Vols. 433-436 (2003), p.33.

[5] Q. Li, A. Polyakov, M. Skowronski, E.K. Sanchez, M.J. Loboda, M.A. Fanton, T. Bogart and R.D. Gamble: J. Appl. Phys. Vol. 97 (2005), p.113705.

[6] Q. Li, A.Y. Polyakov, M. Skowronski, E.K. Sanchez, M.J. Loboda, M.A. Fanton, T. Bogart, D. Gamble, N.B. Smirnov and Yu. Makarov: these proceedings.

[7] Q. Li, A.Y. Polyakov, M. Skowronski, M. D. Roth, M. A. Fanton and D.W. Snyder: J. Appl. Phys. Vol. 96 (2004), p.411.

[8] H. J. Chung, A.Y. Polyakov, S. W. Huh, S. Nigam, M. Skowronski, M. A. Fanton and B. Weiland: J. Appl. Phys. Vol. 97 (2005), p.084913.

[9] S. Nigam, H. J. Chung, A.Y. Polyakov, M. A. Fanton, B.E. Weiland and M. Skowronski: J. Cryst. Growth Vol. 284 (2005), p.112.

[10] M. Fanton, D. Snyder, B. Weiland, R. Cavalero, A. Polyakov, M. Skowronski and H. Chung: J. Cryst. Growth Vol. 287 (2006), p.392.

[11] K. D. Allen and H. H. Sawin: J. Electrochem. Soc., 133 (1986), p.421.

[12] S. Nigam, H.J. Chung, S.W. Huh, J. Grim, A.Y. Polyakov, M.A. Fanton, B. Weiland, D.W. Snyder and M. Skowronski: these proceedings.

[13] M. Fanton, M. Skowronski, D. W. Snyder, H. J. Chung, S. Nigam, B. Weiland and S. W. Huh: Mater. Sci. Forum Vols. 457-460 (2004), p.87.

DOI: https://doi.org/10.4028/www.scientific.net/msf.457-460.87

[14] H.J. Chung, S.W. Huh, A.Y. Polyakov, S. Nigam, Q. Li, J. Grim, M. Skowronski, E.R. Glaser, W.E. Carlos, J.A. Freitas and M.A. Fanton: these proceedings.

[15] D.J. Larkin, P.G. Neudeck, J. A. Powell, and L.G. Matus, Appl. Phys. Lett. Vol. 65 (1994), p.1659.

[16] S.W. Huh, H.J. Chung, S. Nigam, A.Y. Polyakov, Q. Li, M. Skowronski, E.R. Glaser, W.E. Carlos, B.V. Shanabrook and M.A. Fanton: submitted to J. Appl. Phys, (2005).

[17] T. Kimoto, A. Itoh, H. Matsunami and T. Okano: J. Appl. Phys. Vol. 81 (1997), p.3494.

[18] J. Zhang, A. Ellison, A. Henry, M.K. Linnarsson and E. Janz÷n: J. Cryst. Growth, Vol. 226 (2001), p.267.

[19] S.W. Huh, A.Y. Polyakov, H.J. Chung, S. Nigam, M. Skowronski, E.R. Glaser, W.E. Carlos, M.A. Fanton and N.B. Smirnov: these proceedings.