Deep Level Defects Related to Carbon Displacements in n- and p-Type 4H-SiC


Article Preview

We have investigated the electrically active deep level defects in p- and n-type 4H-SiC after low energy electron irradiation. Intrinsic defects were created by irradiation with 200 keV electrons, with energy sufficient to move only the carbon atoms in SiC lattice. Defect spectra were compared between the p- and n-doped samples prepared under identical irradiation conditions. We probed both conduction and valence band sides of the band-gap by using capacitance transient techniques with electrical and optical trap filling. We have found that the defect spectrum in the p-type epilayers differs significantly from the n-type. The Z1/Z2, EH1 and EH3 electron traps which are usually present in irradiated n-type material could not be detected in p-type samples. An electron trap at 1.6 eV below the conduction band edge is present in both n- and p-type samples at the same energy position and with similar concentration, therefore it is probably related to the same type of defect. We have also found a new hole trap in p-type epilayers at energy EV + 0.66 eV.



Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow




L. Storasta et al., "Deep Level Defects Related to Carbon Displacements in n- and p-Type 4H-SiC", Materials Science Forum, Vols. 527-529, pp. 489-492, 2006

Online since:

October 2006




[1] G. Alfieri, E.V. Monakhov, B.G. Svensson and M.K. Linnarsson: J. Appl. Phys. 98 (2005), 043518.

[2] J. Zhang, L. Storasta, J.P. Bergman, N.T. Son and E. Janzén: J. Appl. Phys. 93 (2003), pp.4708-14.

[3] K. Danno, T. Kimoto and H. Matsunami: Appl. Phys. Lett. 86 (2005), 122104.

[4] J. Grillenberger, U. Grossner, B.G. Svensson, F. Albrecht, W. Witthuhn and R. Sielemann: Phys. Rev. B 70 (2004), 205209.

[5] J.W. Steeds, F. Carosella, G.A. Evans, M.M. Ismail, L.R. Danks and W. Voegeli: Mater. Sci. Forum 353-356 (2001), pp.381-4.

[6] T.A.G. Eberlein, C.J. Fall, R. Jones, P.R. Briddon and S. Öberg: Phys. Rev. B 65 (2002), 184108.

[7] L. Storasta, J.P. Bergman, E. Janzén, A. Henry and J. Lu: J. Appl. Phys. 96 (2004), pp.4909-15.

[8] T. Kimoto, A. Itoh, H. Matsunami, S. Sridhara, L.L. Clemen, R.P. Devaty, W.J. Choyke, T. Dalibor, C. Peppermuller and G. Pensl: Inst. Phys. Conf. Ser. 142 (1996), pp.393-6.

DOI: 10.1063/1.114800

[9] C. Hemmingsson, N.T. Son, O. Kordina, J.P. Bergman, E. Janzén, J.L. Lindström, S. Savage and N. Nordell: J. Appl. Phys. 81 (1997), pp.6155-9.

[10] T. Troffer, C. Hassler, G. Pensl, K. Holzlein, H. Mitlehner and J. Volkl: Inst. Phys. Conf. Ser. No 142 (1996), pp.281-4.

[11] M.L. David, G. Alfieri, E.V. Monakhov, A. Hallén, J.F. Barbot and B.G. Svensson: Mater. Sci. Forum 433-436 (2003), pp.371-74.

[12] N.T. Son, B. Magnusson, and E. Janzén: Appl. Phys. Lett. 81 (2002), p.3945.

Fetching data from Crossref.
This may take some time to load.