Identification of the Triplet State N-V Defect in Neutron Irradiated Silicon Carbide by Electron Paramagnetic Resonance

Abstract:

Article Preview

Two types of a new triplet centers labeled as N-V have been observed in heavily neutron irradiated (dose of 1021 cm-2) and high-temperature annealed (2000°C) 6H-SiC crystals. The centers have an axial symmetry along c-axis. Anisotropic hyperfine splitting due to the one 14N nucleus has been observed. The EPR spectra of N-V defects in the triplet state in 6H-SiC reveal strong temperature dependence. The parameters of these centers are similar to that for well-known N-V center in diamond. It seems to consist of silicon vacancy and carbon substitutional nitrogen in the adjacent lattice cites oriented along c-axis. Similar to the diamond N-V centers in SiC have been produced by neutron irradiation and high-temperature annealing of the crystals containing nitrogen. For the first shell the structure of the N-V defect in 6H-SiC is practically identical with that in diamond. The charge state of this defect seems to be +1 compare with neutral state for nitrogensilicon vacancy defect in 6H-SiC with S=1/2.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

555-558

DOI:

10.4028/www.scientific.net/MSF.527-529.555

Citation:

M. V. Muzafarova et al., "Identification of the Triplet State N-V Defect in Neutron Irradiated Silicon Carbide by Electron Paramagnetic Resonance", Materials Science Forum, Vols. 527-529, pp. 555-558, 2006

Online since:

October 2006

Keywords:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.