Electronic Structure and Magnetic Properties of Transition Metal Doped Silicon Carbide in Different Polytypes


Article Preview

We report density functional calculations using the full-potential linearized muffin-tin orbital method on early first row transition metal doped Silicon Carbide in both cubic (3C) and hexagonal (4H) polytypes. The energy levels in the gap for Ti, V and Cr are in good agreement with the available photoluminescence experiments. Our calculation shows that the Ti impurity is active for 4H but not for 3C, while V and Cr impurities are active for both polytypes. The magnetic interactions are very different for Cr and Mn. Cr shows a very local exchange interaction that decays rapidly, which is similar for different polytypes and different sites. The exchange interaction for Mn is quite long range and is very sensitive to the location of the Mn pairs.



Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow




M.S. Miao and W. R.L. Lambrecht, "Electronic Structure and Magnetic Properties of Transition Metal Doped Silicon Carbide in Different Polytypes", Materials Science Forum, Vols. 527-529, pp. 641-646, 2006

Online since:

October 2006




[1] J. Schneider and K. Maier: Physica B Vol. 185 (1993), p.199.

[2] J. M. Spaeth, S. GreulichWeber, M. Marz, et al.: Mater. Sci. Forum Vol. 239-241 (1997), p.149.

[3] T. Dalibor, G. Pensl, N. Nordell, et al.: Phys. Rev. B Vol. 55 (1997), p.13618.

[4] J. Baur, M. Kunzer, and J. Schneider: Phys. Stat. Solidi (a) Vol. 162 (1997), p.153.

[5] N. Achtziger, J. Grillenberger, and W. Witthuhn: Mater. Sci. Forum Vol. 264-268 (1998), p.541.

[6] A. A. Lebedev: Semiconductors Vol. 33 (1999), p.107.

[7] W. Hartung, M. Rasp, D. Hofmann, et al.: Mater. Sci. Eng. B Vol. 61-2 (1999), p.102.

[8] J. Grillenberger, N. Achtziger, G. Pasold, et al.: Mater. Sci. Forum Vol. 389-393 (2002), p.573; G. Pasold, N. Achtziger, J. Grillenberger, et al.: Mater. Sci. Forum Vol. 353-356 (2000), p.471.

DOI: 10.4028/www.scientific.net/msf.389-393.573

[9] H. Overhof, in Defects In Semiconductors, Mater. Sci. Forum Vol. 258-263 (1997).

[10] M. S. Miao and W. R. L. Lambrecht: Phys. Rev. B 68 (2003), p.125204.

[11] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye: Appl. Phys. Lett. Vol. 69 (1996), p.363.

[12] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand: Science Vol. 287 (2000), p.1019; T. Dietl, H. Ohno and F. Matsukura: Phys. Rev. B Vol. 63 (2001), p.195205.

[13] S. J. Pearton, et al.: Thin Solid Films Vol. 447 (2004), p.493.

[14] M. Methfessel, M. van Schilfgaarde, and R. A. Casali, in Electronic Structure and Physical Properties of Solids, The Uses of the LMTO Method, edited by H. Dreysse, Springer Lecture Notes, Workshop Mont Saint Odille, France 1998 (Springer, Berlin, 2000), p.114.

DOI: 10.1007/3-540-46437-9_3

[15] P. Blöchl: Phys. Rev. B Vol. 62 (2000), p.6158.

Fetching data from Crossref.
This may take some time to load.