Europium Induced Deep Levels in Hexagonal Silicon Carbide


Article Preview

Silicon carbide (SiC) was investigated for deep band gap states of europium by means of deep level transient spectroscopy (DLTS). The knowledge of the properties of optoelectrically active impurities or defects is essential for a detailed understanding of the energy-transfer process resulting in the observable excitations [1]. SiC-samples of the polytypes 4H as well as 6H are ion-implanted by different europium- isotopes in order to obtain a chemical identification of the characterized energy levels. Here the concentration sensitivity of the DLTS is applied to observe the elemental transmutation of the incorporated radioactive tracer atoms 146Eu (t1/2=4.51 d) and 147Eu (t1/2=24.6 d). DLTS on samples implanted with stable Eu-ions (153Eu) was carried out for comparison and manifestation of the results. From these studies 5 Eu-related deep band gap levels are established: in 4H-SiC two levels at EV+0.86(2) eV and EC−0.47(2) eV, and in 6H-SiC three levels at EV+0.88(2) eV, EC−0.29(2) eV and EC−0.67(2) eV.



Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow




G. Pasold et al., "Europium Induced Deep Levels in Hexagonal Silicon Carbide", Materials Science Forum, Vols. 527-529, pp. 659-662, 2006

Online since:

October 2006




[1] H. K¨uhne, G. Weiser, E. I. Terukov, A. N. Kusnetsov and V. Kh. Kudoyarova: J. Appl. Phys. 86 (1999), p.896.

[2] E.E. Nyein, U. H¨ommerich, J. Heikenfeld, D.S. Lee, A.J. Steckl and J.M. Zavada: Appl. Phys. Lett. 82 (2003), p.11.

[3] A.J. Steckl and J.M. Zavada: MRS Bulletin (9/1999), p.34.

[4] Y. Shishkin, W. J. Choyke, R. P. Devaty, N. Achtziger, Th. Opfermann and W. Witthuhn: Mater. Sci. Forum 338-342 (2000), p.639.


[5] O. Klettke, S.A. Reshanov, G. Pensl, Y Shishkin, R.P. Devaty and W.J. Choyke: Physica B 308 (2001), p.687.

[6] G. Pasold, F. Albrecht, J. Grillenberger, U. Grossner, C. H¨ulsen, R. Sielemann and W. Witthuhn: Mater. Sci. Forum 433-436 (2003), p.487.


[7] G. Pasold, F. Albrecht, J. Grillenberger, U. Grossner, C. H¨ulsen, W. Witthuhn and R. Sielemann: J. Appl. Phys. 93 (2003), p.2289.

[8] G. Pasold, F. Albrecht, C. H¨ulsen, R. Sielemann, W. D. Zeitz and W. Witthuhn: Mater. Sci. Forum 457-460 (2004), p.783.


[9] D.V. Lang: J. Appl. Phys. 45(7) (1974), p.3023.

[10] N. Achtziger and W. Witthuhn in Silicon Carbide: Recent Major Advances, edited by W. J. Choyke et al.: Springer (2004), pp.537-561.

[11] J. Grillenberger, N. Achtziger, R. Sielemann and W. Witthuhn: J. Appl. Phys. 88 (2000), p.3260.

[12] P. Blood and J.W. Orton: The electrical characterization of semiconductors: majority carriers and electron states, Academic Press, London (1992), p.344 and p.426.

[13] A.A. Lebedev: Semiconductors 33(2), (1999), p.107.

[14] J. Grillenberger, N. Achtziger, F. G¨unther and W. Witthuhn: Appl. Phys. Lett. 73 (1998), p.3698.

Fetching data from Crossref.
This may take some time to load.