Cathodoluminescence Measurements and Thermal Activation of Rare Earth Doped (Tb3+, Dy3+ and Eu3+) a-SiC Thin Films Prepared by rf Magnetron Sputtering


Article Preview

We present comprehensive cathodoluminescence measurements from thin amorphous a- SiC films doped with rare earths. The a-SiC films were prepared by rf magnetron sputtering using a high purity SiC wafer in high purity argon atmosphere (5N, pressure approx. 0.2 mbar). The rare earth doping (Tb, Dy and Eu concentrations were below 2%) was performed by placing respective rare earth metal pieces of appropriate size onto the Silicon Carbide wafer. The rare earth ion emissions cover the colors green (Tb), yellow (Dy) and red (Eu). The optical and related structural properties of the films are correlated by means of high resolution transmission electron microscopy in combination with cathodoluminescence measurements in a scanning electron microscope. In addition, the corresponding compositions are determined by energy-dispersive x-ray analysis. The cathodoluminescence spectra of the rare earth 3+ ions are recorded in the visible at 20°C in the asgrown condition and after annealing treatments in the temperature range from 300°C to 1050°C by steps of 150°C. The anneal-related changes in the cathodoluminescence emission spectra and in the microstructure of the films are addressed. The SiC films show amorphous structure almost independent of the annealing treatment. Optimal annealing temperature for emissions of Tb3+ doped a-SiC were derived to be 600°C whereas Dy3+ and Eu3+ emissions increase at least up to 1050°C.



Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow




R. Weingärtner et al., "Cathodoluminescence Measurements and Thermal Activation of Rare Earth Doped (Tb3+, Dy3+ and Eu3+) a-SiC Thin Films Prepared by rf Magnetron Sputtering", Materials Science Forum, Vols. 527-529, pp. 663-666, 2006

Online since:

October 2006




[1] A. J. Steckl and J. M. Zavada: MRS Bull. 24 (1999), p.16.

[2] P. N. Favennec, H. L'Haridon, D. Moutonnet, M. Salvi and M. Gauneau: Mater. Res. Soc. Symp. Proc. Vol. 301 (1993), p.181.

[3] A. R. Zanatta: Appl. Phys. Lett. 82 (2003), p.1395.

[4] W. M. Jadwisienczak, H. J. Lozykowski, I. Berishev, A. Bensaoula and I. G. Brown: J. Appl. Phys. 89 (2001), p.4384.

[5] W. M. Jadwisienczak, H. J. Lozykowski, F. Perjeru, H. Chen, M. Kordesch and I. G. Brown: Appl. Phys. Lett. 76 (2000), p.3376.

[6] S. B. Aldabergenova, M. Albrecht, H. P. Strunk, J. Viner, P. C. Taylor and A. A. Andreev: Mater. Sci. Eng. B 81 (2001), p.144.

[7] S. B. Aldabergenova, A. Osvet, G. Frank, H. P. Strunk, P. C. Taylor and A. A. Andreev: J. Non-Cryst. Sol. 299-302 (2002), p.709.

[8] V. I. Dimitrova, P. G. V. Patten, H. H. Richardson and M. E. Kordesch: Appl. Phys. Lett. 77 (2000), p.478.

[9] J. Bullot and M. P. Schmidt: Phys. Stat. Sol. (b) 143 (1987), p.345.

[10] Y. Hamakawa, D. Kruanagam, M. Deguchi, Y. Hattori, T. Toyama and H. Okamoto: Appl. Surf. Sci. 33-34 (1988), p.1142.

[11] W. J. Choyke, R. P. Devaty, L. L. Clemen, M. Yoganathan, G. Pensl and C. Hässler: Appl. Phys. Lett. 65 (1994), p.1668.

[12] G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in (McGraw-Hill, 1968).

[13] R. Weingärtner, O. Erlenbach, A. Winnacker, A. Welte, I. Brauer, H. P. Strunk, C. T. M. Ribieiro and A. R. Zanatta, accepted for publication in Optical Materials (2005).

Fetching data from Crossref.
This may take some time to load.