Thermal Lens Technique for the Determination of SiC Thermo-Optical Properties


Article Preview

In this paper we combine the use of photo-thermal techniques, Thermal lens (TL) spectrometry, Photoacoustic and heat capacity measurements to determine the optical path dependence with temperature (ds/dT) of a polycrystalline 3C-SiC sample. Results obtained for the polycrystalline sample with the TL technique show that ds/dT is negative at room temperature. This means that the thermal lens formed in 3C-SiC acts as a divergent lens when light impinges the sample. Our measurements, demonstrate that photo-thermal techniques can be used to obtain thermal parameters in circumstances where other techniques cannot be used, for example, in harsh environments.



Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow




V. Anjos et al., "Thermal Lens Technique for the Determination of SiC Thermo-Optical Properties", Materials Science Forum, Vols. 527-529, pp. 703-706, 2006

Online since:

October 2006




[1] Y. Kuwano, M. Ohnishi, S. Tsuda, and Y. Hamkawa: J. Appl. Phys. 53 (1982), p.5273.

[2] D. Kruangam, T. Endo, W. Guang-Pu, S. Nonomura, H. Okamoto, and Y. Hamkawa: J. NonCryst. Solids 77-78 (1985), p.1429.

[3] F. Palma, in Technology and Applications of Amorphous Silicon, R. A. Street (Ed. ), Springer, Berlin, 2000, pp.306-341.

[4] T. Lai, L. Rozario, J. H. Chern, L. P. Sadwick, R. J. Hwu, D. King, V. E. Chelnokov, and P. A. Ivanov: Proceedings of the 3rd International High Temperature Electronic Conference (HiTEC), Vol. 1, Albuquerque, New Mexico, June 1996, p.183.

[5] M. B. Bhatanagar and B. J. Boliga: IEEE Trans. Electron Devices 40 (1993), p.645.

[6] P. G. Neudeck: J. Electron. Mater. 24 (1995), p.283.

[7] Silicon Carbide and Related Materials (1995), Institute of Physics Conference Series No. 142, IOP, Bristol, U.K., (1996).

[8] F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, and A. Rubino: Appl. Phys. Lett. 79 (2001), p.168.

[9] Y. Waseda and H. Ohta: Solid State Ionics 22 (1987), p.263.

[10] J. A. Balderas-Lopez, A. Mandelis, and J. A. Garcia: Rev. Sci. Instrum. 71 (2000), p.2933.

[11] S. Pittois, M. Chirtoc, C. Glorieux, W. Van den Bril, and J. Thoen: Anal. Sci. 17, s110 (2001).

[12] N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos: Phys. Rev. B 71 (2005), p.214202.


[13] J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira: J. Appl. Phys. 89 (2001), p.2220.

[14] M. L. Baesso, J. Shen, and R. D. Snook: J. Appl. Phys. 75 (1994), p.3733.

[15] H. Vargas and L. C. M. Miranda: Phys. Rep. 161 (1998), p.43.

[16] D. Amond, and P. Patel in Photoacoustic and Photothermal Science and Techniques (Chapman and Hall, London, 1996).

[17] Yu Goldberg., M. E. Levinshtein, and S. L. Rumyantsev in Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, SiGe . Eds. M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, John Wiley & Sons, Inc., New York, 2001, pp.93-148.


Fetching data from Crossref.
This may take some time to load.