Activation Treatment of Ion Implanted Dopants Using Hybrid Super RTA Equipment

Abstract:

Article Preview

We perform rapid thermal annealing (RTA) on areas as large as 2-inch φ (diameter) at high temperature using the hybrid super RTA (HS-RTA) equipment. The HS-RTA equipment consists of an infrared annealing unit and a RF induction annealing unit in order to uniformly anneal over 2-inch φ susceptor. As a result of annealing by the HS-RTA equipment, the temperature is elevated from RT to peak temperature (~1800°C) for less than 1 min, remain stable at annealing temperature for 30s and falls from peak temperature to 1000°C within less than 20s. The temperature distributions on a 2-inch φ susceptor are ±10°C, ±33°C and ±55°C at 1565°C, 1671°C and 1752°C, respectively. Phosphorus (P) ion implanted silicon carbide (SiC) samples are used to evaluate the performance of the HS-RTA equipment. The five implanted samples placed on the 2-inch φ susceptor are annealed for 30s at 1565°C, 1671°C and 1752°C. The mean sheet resistances of the 5 samples annealed at 1565°C, 1671°C and 1752°C are 92.6Ω/􀀀, 82.6Ω/􀀀 and 75.5Ω/􀀀, respectively. The sheet resistance uniformities are 9.9%, 7.9% and 9.3%. The average roughness (Ra) is calculated from 10 μm square Atomic Force Microscopy (AFM) image. Ra values of the samples annealed at 1565°C, 1671°C and 1752°C are 2.399 nm, 2.408 nm and 3.282 nm, respectively.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

803-806

Citation:

A. Kinoshita et al., "Activation Treatment of Ion Implanted Dopants Using Hybrid Super RTA Equipment", Materials Science Forum, Vols. 527-529, pp. 803-806, 2006

Online since:

October 2006

Export:

Price:

$38.00

[1] J. Senzaki, K. Fukuda, and K. Arai: J. Appl. Phys. Vol. 94 (2003), p.2942.

[2] F. Schmid, M. Laube, G. Pensl, G. Wagner, and M. Maia: J. Appl. Phys. Vol. 91 (2002), p.9182.

[3] N. S. Saks, A. V. Suvorov, and D. C. Capell: Appl. Phys. Lett. Vol. 84 (2004), p.5195.

[4] H. Tanaka, S. Tanimoto, M. Yamanaka, M. Hoshi: Mat. Sci. Forum Vol. 389-393 (2002), p.803.

[5] M. V. Rao, J. B. Tucker, M. C. Ridgway, O. W. Holland, N. Papanicolaou, and J. Mitteredar: J. Appl. Phys. Vol. 86 (1999), p.752.

[6] G. L. Harris, Silicon Carbide, ed. G. L. Harris (INSPEC, London, 1995) EMIS Datareviews Series No. C, Chap 7.

[7] M. Rambach, A. J. A. J. Bauer, L. Frey, P. Friedrichs, and H. Physsel., Mat. Sci. Forum Vol. 483-485 (2005), p.537.

[8] L. Muehhoff, W. J. Choyke, M. J. Bozack and John T. Yates, Jr, J. Appl. Phys. Vol. 60 (1986), p.2842.

[9] Y. Seki, Y. Shimizu and A. Nakagawa in Power semiconductor Device and Power IC Handbook, edited by Y. Sugawara et al. (CORONA, Tokyo, 1996), p.391.