Activation Treatment of Ion Implanted Dopants Using Hybrid Super RTA Equipment


Article Preview

We perform rapid thermal annealing (RTA) on areas as large as 2-inch φ (diameter) at high temperature using the hybrid super RTA (HS-RTA) equipment. The HS-RTA equipment consists of an infrared annealing unit and a RF induction annealing unit in order to uniformly anneal over 2-inch φ susceptor. As a result of annealing by the HS-RTA equipment, the temperature is elevated from RT to peak temperature (~1800°C) for less than 1 min, remain stable at annealing temperature for 30s and falls from peak temperature to 1000°C within less than 20s. The temperature distributions on a 2-inch φ susceptor are ±10°C, ±33°C and ±55°C at 1565°C, 1671°C and 1752°C, respectively. Phosphorus (P) ion implanted silicon carbide (SiC) samples are used to evaluate the performance of the HS-RTA equipment. The five implanted samples placed on the 2-inch φ susceptor are annealed for 30s at 1565°C, 1671°C and 1752°C. The mean sheet resistances of the 5 samples annealed at 1565°C, 1671°C and 1752°C are 92.6Ω/􀀀, 82.6Ω/􀀀 and 75.5Ω/􀀀, respectively. The sheet resistance uniformities are 9.9%, 7.9% and 9.3%. The average roughness (Ra) is calculated from 10 μm square Atomic Force Microscopy (AFM) image. Ra values of the samples annealed at 1565°C, 1671°C and 1752°C are 2.399 nm, 2.408 nm and 3.282 nm, respectively.



Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow




A. Kinoshita et al., "Activation Treatment of Ion Implanted Dopants Using Hybrid Super RTA Equipment", Materials Science Forum, Vols. 527-529, pp. 803-806, 2006

Online since:

October 2006




[1] J. Senzaki, K. Fukuda, and K. Arai: J. Appl. Phys. Vol. 94 (2003), p.2942.

[2] F. Schmid, M. Laube, G. Pensl, G. Wagner, and M. Maia: J. Appl. Phys. Vol. 91 (2002), p.9182.

[3] N. S. Saks, A. V. Suvorov, and D. C. Capell: Appl. Phys. Lett. Vol. 84 (2004), p.5195.

[4] H. Tanaka, S. Tanimoto, M. Yamanaka, M. Hoshi: Mat. Sci. Forum Vol. 389-393 (2002), p.803.

[5] M. V. Rao, J. B. Tucker, M. C. Ridgway, O. W. Holland, N. Papanicolaou, and J. Mitteredar: J. Appl. Phys. Vol. 86 (1999), p.752.

[6] G. L. Harris, Silicon Carbide, ed. G. L. Harris (INSPEC, London, 1995) EMIS Datareviews Series No. C, Chap 7.

[7] M. Rambach, A. J. A. J. Bauer, L. Frey, P. Friedrichs, and H. Physsel., Mat. Sci. Forum Vol. 483-485 (2005), p.537.

[8] L. Muehhoff, W. J. Choyke, M. J. Bozack and John T. Yates, Jr, J. Appl. Phys. Vol. 60 (1986), p.2842.

[9] Y. Seki, Y. Shimizu and A. Nakagawa in Power semiconductor Device and Power IC Handbook, edited by Y. Sugawara et al. (CORONA, Tokyo, 1996), p.391.

Fetching data from Crossref.
This may take some time to load.