Development and Investigation on EBAS-100 of 100 mm Diameter Wafer for 4H-SiC Post Ion Implantation Annealing

Abstract:

Article Preview

We developed EBAS-100, which is available to 100 mm diameter SiC wafer, for post ion implantation annealing in order to realize silicon carbide (SiC) device with large volume production. EBAS-100 is able to perform the rapid thermal process due to the vacuum thermal insulation and small heat capacity of susceptor. Electrical power consumption density was 18.8 Wh/cm2 for EBAS-100, which is one-third smaller than that of our previous system (EBAS-50). Samples used in this study were p-type epitaxial 4H-SiC (0001) grown on 8o off SiC substrate. P+ ions (total dose; 2.0 x 1016 /cm2, thickness; 350 nm) were implanted into SiC samples at 500 oC. The root-mean-square (RMS) of surface roughness is estimated to be 0.21 nm for the sample annealed at 1700 oC for 5 min, which is much smooth than that of the sample annealed by the conventional RF inductive annealing (RMS value: 5.97 nm). Averaged sheet resistance (RS) value of 63.3 ohm/sq. is obtained with the excellent non-uniformity of RS (+/- 1.4 %) for the diameter of 76.0 mm.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

807-810

DOI:

10.4028/www.scientific.net/MSF.527-529.807

Citation:

M. Shibagaki et al., "Development and Investigation on EBAS-100 of 100 mm Diameter Wafer for 4H-SiC Post Ion Implantation Annealing", Materials Science Forum, Vols. 527-529, pp. 807-810, 2006

Online since:

October 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.