Observation of Thermal-Annealing Evolution of Defects in Ion-Implanted 4H-SiC by Luminsescence

Abstract:

Article Preview

4H-SiC samples implanted at 600°C with 1020 cm-3 of B or B and C to a depth of ~0.5 μm, capped with (BN/AlN), and annealed at temperatures ranging from 1400°C – 1700°C were studied using variable temperature cathodoluminescence. New emission lines, which may be associated with stacking faults, were observed in the samples co-implanted with B and C, but not in the samples implanted only with B. For both the B and B and C co-implanted samples, the intensity of the line near 3.0 eV decreases with increasing annealing temperature, TA, and this line is not observed after annealing at 1700°C. The D1 defect related emission lines are observed in the luminescence spectra of all samples and their relative intensities seem to vary with the implantation-annealing schedule and excitation conditions.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

847-850

DOI:

10.4028/www.scientific.net/MSF.527-529.847

Citation:

J. A. Freitas et al., "Observation of Thermal-Annealing Evolution of Defects in Ion-Implanted 4H-SiC by Luminsescence", Materials Science Forum, Vols. 527-529, pp. 847-850, 2006

Online since:

October 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.