Nanoscale Deep Level Defect Correlation with Schottky Barriers in 4H-SiC/Metal Diodes

Abstract:

Article Preview

We have used depth-resolved cathodoluminescence spectroscopy (DRCLS) to correlate subsurface deep level emissions and double barrier current-voltage (I-V) characteristics across an array of Ni/4H-SiC diodes on the same epitaxial wafer. These results demonstrate not only a correspondence between these optical features and measured barrier heights, but they also suggest that such states may limit the range of SB heights in general. DRCLS of near-ideal diodes show a broad 2.45 eV emission at common to all diode areas and associated with either impurities or inclusions. Strongly non-ideal diodes exhibit additional defect emissions at 2.2 and 2.65 eV. On the other hand, there is no correlation between the appearance of morphological defects observed by polarized light microscopy or X-ray topography and the presence of double barrier characteristics. The DRCLS observations of defect level transitions that correlate with non-ideal Schottky barriers suggest that these sub-surface defect features can be used to predict Schottky barrier behavior.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

907-910

Citation:

S. P. Tumakha et al., "Nanoscale Deep Level Defect Correlation with Schottky Barriers in 4H-SiC/Metal Diodes", Materials Science Forum, Vols. 527-529, pp. 907-910, 2006

Online since:

October 2006

Export:

Price:

$38.00

[1] H. Lendenmann, F. Dahlquist, J.P. Bergman, H. Bleichner, and C. Hallin: Mat. Sci. Forum Vols. 389-3 (2002), p.1259.

[2] L.J. Brillson: J. Vac. Sci. Technol. B Vol 19 (2001), p.1762 and references therein.

[3] S. Tumakha, S.H. Goss, LJ Brillson, and R.S. Okojie: J. Vac. Sci. Technol. B Vol. 23 (2) (2005), p.594.

[4] S.T. Bradley, S.H. Goss, J. Hwang, W.J. Schaff, and L.J. Brillson: Appl. Phys. Lett. Vol. 85, (2004), p.1368.

[5] H.L. Mosbacker, Y.M. Strzhemechny, B.D. White, P.E. Smith, D.C. Look, D.C. Reynolds, C.W. Litton, and L.J. Brillson: Appl. Phys. Lett. Vol. 82 (1) (2005), p.012102.

[6] S. Tumakha, L.J. Brillson, G.H. Jessen, R.S. Okojie, D. Lukco, M. Zhang, and P. Pirouz: J. Vac. Sci. Technol. B Vol. 20 (2) (2002) p.554.

DOI: https://doi.org/10.1116/1.1451303

[7] T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schıner, and N. Nordell: Phys. Stat. Sol. (a) Vol. 162 (1997), p.199.

[8] S. Izumi, H. Tsuchida, I. Kamata, and T. Tawara: Appl. Phys. Lett. 86 (2005), p.202108.

[9] H. Fujiwara, T. Kimoto, T. Tojo, and H. Matsunami: Appl. Phys. Lett. Vol. 87 (2005), p.051912.

[10] E. N. Kalabukhova, S. N. Lukin, D. V. Savshenko W. C. Mitchel and W. D. Mitchel: Mat. Sci. Forum Vols. 457-460 (2004) p.501.

[11] J. P. Bergman, L. Storasta, F. H. C. Carlsson, S. Sridhara, B. Magnusson, and E. Janzén: Physica B Vols. 308-310 (2001), p.675.

[12] W. E. Carlos, E. R. Glaser, and B. V. Shanabrook: Physica B Vols. 340-342, (2003). p.151.

[13] X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu: Phys. Rev. Lett. Vol. 94 (2005), p.026102.

Fetching data from Crossref.
This may take some time to load.