High Channel Mobility 4H-SiC MOSFETs


Article Preview

We report investigations of MOS and MOSFET devices using a gate oxide grown in the presence of sintered alumina. In contrast to conventionally grown dry or wet oxides these oxides contain orders of magnitude lower density of near-interface traps at the SiO2/SiC interface. The reduction of interface traps is correlated with enhanced oxidation rate. The absence of near-interface traps makes possible fabrication of Si face 4H-SiC MOSFETs with peak field effect mobility of about 150 cm2/Vs. A clear correlation is observed between the field effect mobility in n-channel MOSFETs and the density of interface states near the SiC conduction band edge in n-type MOS capacitors. Stable operation of such normally-off 4H-SiC MOSFET transistors is observed from room temperature up to 150°C with positive threshold voltage shift less than 1 V. A small decrease in current with temperature up to 150°C is related to a decrease in the field effect mobility due to phonon scattering. However, the gate oxides contain sodium, which originates from the sintered alumina, resulting in severe device instabilities during negative gate bias stressing.



Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow




E. Ö. Sveinbjörnsson et al., "High Channel Mobility 4H-SiC MOSFETs", Materials Science Forum, Vols. 527-529, pp. 961-966, 2006

Online since:

October 2006




[1] V.V. Afanasev, A. Stesmans, M. Bassler, G. Pensl and M.J. Schulz: Appl. Phys. Lett. Vol. 76 (2000), p.336.

[2] V.V. Afanasev, A. Stesmans, F. Ciobanu, G. Pensl, K.Y. Cheong and S. Dimitrijev: Appl. Phys. Lett. Vol. 82 (2003), p.568.

[3] K. McDonald, R.A. Weller, S.T. Pantelides, L.C. Feldman, G.Y. Chung, C.C. Tin and J.R. Williams: J. Appl. Phys. Vol. 93 (2003), p.2719.

[4] G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das and J.W. Palmour: IEEE Electr. Dev. Lett. Vol. 22 (2001), p.176.

DOI: https://doi.org/10.1109/55.915604

[5] R. Schörner, P. Friedrichs, D. Peters, D. Stephani, S. Dimitrijev and P. Jamet: Appl. Phys. Lett. Vol. 80 (2002), p.4253.

[6] C-Y. Lu, J.A. Cooper, Jr., T. Tsuji, G. Chung, J.R. Williams, K. McDonald and L.C. Feldman: IEEE Trans. on Electron Dev., Vol. 50 (2003), p.1582.

[7] H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano and Y. Sugawara: IEEE Electr. Dev. Lett. Vol. 20 (1999), p.611.

[8] J. Senzaki, K. Fukuda, K. Kojima, S. Harada, R. Kosugi, S. Suzuki, T. Suzuki and K. Arai: Mater. Sci. Forum Vol. 389-393 (2002), p.1061.

[9] K. Fukuda, M. Kato, K. Kojima, J. Senzaki and T. Suzuki: Mater. Sci. Forum Vol. 457-460 (2004), p.1417.

[10] H. Yano, T. Kimoto and H. Matsunami: Appl. Phys. Lett. Vol. 81 (2002), p.301.

[11] G. Gudjonsson, H.Ö. Ólafsson, F. Allerstam, P-Å. Nilsson, E.Ö. Sveinbjörnsson, H. Zirath, T. Rödle and R. Jos: IEEE Electr. Dev. Lett. Vol. 26 (2005), p.96.

DOI: https://doi.org/10.4028/0-87849-425-1.961

[12] D. Alok, E. Arnold, R. Egloff and S. Mukherjee: US Patent No. 6, 559, 068 (2003).

[13] H.Ö. Ólafsson: Ph. D. thesis, Chalmers University of Technology, Göteborg, Sweden, (2004).

[14] R. Moene, E. Tijsen, M. Makkee and J.A. Moulijn: Appl. Catalysis A Vol. 184 (1999), p.127.

[15] Z. Zheng, R.E. Tressler and K.E. Spear: Corrosion Science Vol. 33 (1992), p.545.

[16] E. Opila: J. Am. Ceram. Soc. Vol. 78, (1995), p.1107.

[17] T.E. Rudenko, I.N. Osiyuk, I.P. Tyagulski, H.Ö. Ólafsson and E.Ö. Sveinbjörnsson: Solid State Electr. Vol. 49 (2005), p.545.

DOI: https://doi.org/10.1016/j.sse.2004.12.006

[18] S.K. Powell, N. Goldsman, J.M. McGarrity, J. Bernstein, C. Scozzie and A. Lelis: J. Appl. Phys. Vol. 92 (2002), p.4053.