Effect of Sintering Temperature in Physical-Mechanical Behaviour and in Titanium-Hydroxyapatite Composite Sinterability


Article Preview

Mechanical alloying (MA) has been successfully used to produce alloys and composites with a high homogeneity degree. In current research, titanium (Ti) powder was mixed with 40, 50% volume of hydroxyapatite (HAp). MA was performed without atmosphere control, at room temperature, for 4.5 hours of milling time, at rotation speed of 300 rpm. Samples of material were compacted in cylindrical form at 350 MPa and sintered in 2.0 flux air (l/min) at 1000, 1100 and 1200oC during 1 hr. The material’s morphological and microstructural characterization, in powder form and in sintered material, was performed by scanning electronic microscope and X-ray diffractometry. Thermal treatments revealed that sintering temperature affects the microstructure, microhardness and the composition of the composites evaluated by EDS.



Materials Science Forum (Volumes 530-531)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




W.R. Weinand et al., "Effect of Sintering Temperature in Physical-Mechanical Behaviour and in Titanium-Hydroxyapatite Composite Sinterability", Materials Science Forum, Vols. 530-531, pp. 249-254, 2006

Online since:

November 2006




[1] Rao, R.R., Roopo, H. N., Khannan, T. S., J. Mater. Sci. Mater. Med. 8 9 (1997), p.511.

[2] Klein, C.P.A.T., Patka, P., Vander Lubbe, H.B.M., Wolke, C.G., De Groot, J. Biomed Matter Res. 25 (1991), S53.

[3] De Groot, K., De Putter, C., Diessen, H., Sci. Ceram. 11(1981), p.433.

[4] Miao, X., Materials Letters, 57 (2003), p.1848.

[5] Kassuga, T., Yoshida, M., Ikushima, A., Tuchiya, M., Kusakari, H., J. Mater. Sci: Mater Med. 4(1993), p.36.

[6] Takaqi, N., Mochida, M., Uchida, N., Saito, K., Uematsu, K., J. Mater. Sci : Mater. Med. 3(1992), p.199.

[7] Kokubo, T., Miyaji, F., Kin, H.M., Nakamura, T., J. Am. Ceram. Soc. 79(1996), p.1127.

[8] Kin, H.M., Miyaji, F., Kokubo, T., Nakamura, T., J. Biomed. Mater. Res. 32(1996), p.409.

[9] Sridhar, T. M; Mudali, K. U e Subbaiyan M., Corrosion Science, 45(2003) p.2337.

[10] Andrade, M. C; Filgueiras M. R. T. e Ogasawara; T., Journal of the European Ceramic Society, 22(2002), p.505.

[11] Xiong, L. e Leng, Y., Biomaterials, (Article in press, 2003).

[12] Fu, L; Khor, K e Lim, J.P. Materials Science Engineering A, A316 (2001) p.46.

[13] Wang, J; Layrolle, P; Stigter, M e De Groot, K., Biomaterials, 25(2003), p.583.

[14] Ning, C.Q. e Zhou, Y., Biomaterials, 23 (2001) p.2909.

[15] Chenglin, C; Jingchuan, Z. e Shidong, W., Mat. Sci. Engineering A, A271(1999), p.95.

[16] Yang; Y; Kim; K. H; Agrawal, C.M. e Ong, L. J., Biomaterials, Article in press, (2003).

[17] Determination of Density of Compacted: MPIF standard no 42, (1986).

[18] Standard Test Method for Micro hardness of Materials. Current edition approved Oct. 1989. Published April 1999. ASTM Committee E-4 on Metallographic and subcommittee E04. 05 on Micro hardness.

[19] Lima,W. M; Weinand, R. W; Santos, O.A.A. Santos; Paesano. Jr, A. e Ortega, F. H.M.O. In: Fourth International Latin-American Conference on Powder Technology - PTECH Guarujá, Brazil. (2003), p.1238.

Fetching data from Crossref.
This may take some time to load.