Properties of AA6061 Aluminum Alloy Reinforced with Different Intermetallics and Ceramics Particles


Article Preview

Aluminum alloys have been increasingly applied as a structural material in composite materials using metal matrix due to their excellent mechanical properties and low weight. The reinforcement are of fundamental importance in composite materials, owing to the their responsibility to support stresses acting on the metal matrix. Therefore, ceramic reinforcements can be replaced by intermetallic components with high mechanical properties and good thermal stability. The intermetallic components react chemically with the matrix, characterized by strong interactions, which makes possible the development of the new families of materials. The composite materials using aluminum reinforced with nickel aluminides and ceramic were developed using techniques based on a combination of powder metallurgy and extrusion processes, which makes possible to obtain more dense materials under lower processing temperatures. The powders of AA6061 and Ni3Al were manually mixed for 30 minutes, with different percentages of intermetallics and ceramics particles, 5 and 10% in weight. The composite powders were submitted to a hot extrusion process for 40 minutes at 540oC, and 385 MPa, with a reduction ratio of 25:1. This process insures extruded composites with a refined structure and a good distribution of the reinforcement particles. The material characterization were performed through structural analysis via scanning electron microscopy; mechanical behavior via tensile and hardening tests; and analysis of the fracture. The results show that the method used is effective to obtain composite materials with improved characteristics.



Materials Science Forum (Volumes 530-531)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




C. E. da Costa et al., "Properties of AA6061 Aluminum Alloy Reinforced with Different Intermetallics and Ceramics Particles", Materials Science Forum, Vols. 530-531, pp. 255-260, 2006

Online since:

November 2006




[1] Hehmann, F. y Froes, F.H. Advances in Lightweight Non-Ferrous PM Metals". PM, 94, vol. III, pp.1591-1604, Paris, (1994).

[2] Lindroos,.K. y Talvitie, M.J. Recent Advances in Metal Matrix Composites,. Journal Materials Processing Technology, 53, pp.273-284, (1995).

DOI: 10.1016/0924-0136(95)01985-n

[3] Ranganath, S. A Review on Particulate-Reinforced Titanium matrix composites,. Journal of Materials Science, Vol. 32, pp.1-16, Chapman &Hall, (1997).

[4] Harris, S.J. Developments in Particulate and Short Fibre Composites,. AGARD Lectures Series nº 174: New Light Alloys, p.4: 1-4: 21, (1990).

[5] Da Costa, C.E. Obtención de Materiales Compuestos de Matriz de Alumínio Reforzados com Intermetálicos. Estudio y Optimización de la aleacion base y los Intermetálicos obtenidos por Aleación Mecánica. Tese de doutorado defendida na Universidade Politécnica de Madrid, Madrid, Espanha, (1998).

DOI: 10.3989/revmetalm.2001.v37.i2.470

[6] Amigó, V. Desarrollo de Materiales Compuestos de Matriz de Alumínio por Vía Pulvimetalúrgica. Trabalho de pesquisa apresentado como projeto de defesa de uma Cátedra, (1999).

DOI: 10.3989/cyv.2000.v39.i4.809

[7] Busquet,D. Investigación de la interacción Matriz-Partícula em Materiales Compuestos de Matriz de Alumínio Reforzados com Intermetálicos. Influencia en las Características Resistentes. Tese de doutorado defendida na Universidade Politécnica de Valência, Valencia, Espanha, (2000).

DOI: 10.3989/revmetalm.2001.v37.i2.470

[8] De Carvalho, Caracterização de compósitos com matriz de Alumínio AA6061 reforçados com Aluminetos de Titânio. Relatório interno, Udesc, 75 pg., Ago. (2002).

DOI: 10.11606/d.3.2016.tde-12072016-114838

Fetching data from Crossref.
This may take some time to load.