Structure and Properties of Gradient Layers Using High Power Diode Laser


Article Preview

Investigations include alloying the X38CrMoV5-3 hot-work tool steel surface layer with the tungsten carbide, using the high power diode laser (HPDL). The tungsten carbide ceramic particles of the medium grain size according to FSSS = 50 Bm were introduced using the rotor conveyer to improve the properties of the surface layer. The powder feed rate was set at the steady level of 8.64g/min. Remelting and alloying were carried out several times in the laser power range of 1.2 – 2.3 kW in the remelting/alloying, alloying/remelting sequences. The structural mechanism was determined of gradient layer development, effect was studied of alloying parameters, gas protection method, and powder feed rate on its mechanical properties, and especially on its hardness, abrasive wear resistance, and roughness. Structure changes were revealed consisting, in particular, in its refining, and also hardness and microhardness changes in comparison to the non-remelted steel. Examination results obtained with the EDX microanalysis, surface and linear analyses of the chemical composition, as well as the X-ray qualitative phase analysis are presented.



Materials Science Forum (Volumes 530-531)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




L. A. Dobrzański et al., "Structure and Properties of Gradient Layers Using High Power Diode Laser", Materials Science Forum, Vols. 530-531, pp. 269-274, 2006

Online since:

November 2006