Synthesis and Characterization of Nanosized ZrTiO4 Powders Prepared by the Sol-Gel Method


Article Preview

Ceramic ZrTiO4 powders were prepared by a modified sol-gel method using zirconium oxychloride and titanium tetraisopropoxide. In situ high temperature X-ray diffraction results show that crystallization of the amorphous gel starts at 400 °C. Singlephase ZrTiO4 nanoparticles were obtained after heat treatment at 450 oC for 1 h. An average particle size of 46 nm has been determined by nitrogen adsorption analysis. After pressing these sinteractive powders, pellets with controlled pore size distribution were obtained by sintering at temperatures as low as 400 oC. The analysis of pores by mercury porosimetry shows an average porosity of 45 %. Pressing and sintering the nanosized powders prepared by that modified sol-gel technique produced pellets that are good candidates to be used in humidity sensing devices.



Materials Science Forum (Volumes 530-531)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




I. C. Cosentino et al., "Synthesis and Characterization of Nanosized ZrTiO4 Powders Prepared by the Sol-Gel Method", Materials Science Forum, Vols. 530-531, pp. 401-407, 2006

Online since:

November 2006




[1] S. Yang and J.M. Wu, J. Mater. Sci. 26 (1991), p.631.

[2] M.K. Jain, M.C. Bhatnagar, and G.L. Sharma, Sens. Actuators B 55 (1999), p.17.

[3] I.C. Cosentino, E. N. S. Muccillo, and R. Muccillo, Sens. Actuators B 96 (2003), p.677.

[4] K. Wakino, H. Minai, and H. Tamura, J. Am. Ceram. Soc. 67 (1984), p.278.

[5] M. Leoni, M. Viviani, G. Battilana, A. M. Fiorello, and M. Viticoli, J. Eur. Ceram. Soc. 21 (2001), p.1739.

[6] A.J. Moulston and J.M. Herbert, Electroceramics (Chapman & Hall, New York, 1990).

[7] F.P. Daly, H. Ando, J.L. Schmitt, and A.E. Sturm, J. Catal. 108 (1987), p.401.

[8] J. Miciukiewicz and T. Mang, Appl. Catal. A: Gen. 122 (1995), p.151.

[9] B. M. Reddy, P. M. Sreekanth, Y. Yamada, Q. Xu, and T. Kobayashi, Appl. Catal. A: Gen. 228 (2002), p.28.

[10] D. A. Chang, P. Lin, and T. Tseng, J. Appl. Phys. 77 (1995), p.4445.

[11] F.Z. Hund, Z. Anorg. Allg. Chem. 525 (1985), p.221.

[12] A.E. McHale and R.S. Roth, J. Am. Ceram. Soc. 69 (1986), p.827.

[13] S. Ananta, R. Tipakontitikul, and T. Tunkasiri, Mater. Lett. 57 (2003), p.2637.

[14] J.A. Navio, F.J. Marchena, M. Macias, P.J. Sanchez-Soto, and P. Pichat, J. Mater. Sci. 27 (1992), p.2463.

[15] A.K. Bhattacharya, K.K. Malick, A. Hartridge, J.L. Woodhead, Mater. Lett. 18 (1994), p.247.

[16] A.K. Bhattacharya, K.K. Mallick, A. Hartridge, J.L. Woodhead, J. Mater. Sci. 31 (1996), p.267.

[17] E.L. Sham, M.A.G. Aranda, E.M. Farfa-Torres, J.C. Gottifredi, M. Martinez-Lara, and S. Bruque, J. Solid State Chem. 139 (1998), p.225.

[18] M. Adrianainarivelo, R.J.P. Corriu, D. Lechlercq, P.H. Mutin, and A. Vious, J. Mater. Chem. 7 (1997), p.279.

[19] B.E. Warren, X-Ray Diffraction (Dover Publications, Inc., New York, 1969), p.253.

[20] N. Claussen and M. Ruhle, in Advances in Ceramics, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Inc., Columbus, 1981), p.137.

[21] F. Khairulla and P.P. Phule, Mater. Sci. Eng. B 12 (1992), p.327.

[22] M.K. Jain, M.C. Bhatnagar, and G.L. Sharma, Jpn. J. Appl. Phys. 39 (2000), p.345.